The Cohomology of the Dyer Lashof Algebra

David Kraines and Thomas Lada

The Dyer Lashof algebra R is a noncommutative algebra over Z/p similar
in form to the mod p Steenrod glgebra Ap' In this paper we show that the

cohomology of the algebra RP is isomorphic as Ap modules to AP(L), the

Steenrod algebra for restricted Lie algebras. Many of the results of this
paper are implicit in work of S. Priddy and of H. Miller for p = 2.

§ 1, Let X be an infinite loop space and let p be a prime. Then X has

a product m : X x X = X which enjoys strong homotcpy commutativity properties.
Kudo and Araki [KA] and Browder [B2] exploited these properties to comstruct
mod 2 homology operations similar in type to the Steenrod reduced squares.
Dyer and Lashof [DL] generalized this construction to odd primes and, in

addition, showed that the operationms Qk : Hn (X; z/p)~+ H 1)(X; Z/p)

n+2k (p-
satisfy excess and Adem relations quite analogous to those satisfied by the
Steenrod operations.

%
Since H (X; Z/p) is a module over Ap’ H (X; Z/p) is a module over A;p,
the opposite Steenrod algebra. Thus H, (X; Z/p) is a module over both A;p
and the algebra Rp of Dyer Lashof operations. ©Nishida [N] derived a formula

for computing the interaction of these operations. J. P. May [CIM], [M31, [M4]
has made extensive investigations and computations with this algebraic
structure, See also Bisson [Bl] and Madsen [M2].

DEFINITICON 1.1. The Dyer Lashof algebra Rp is the graded Z/p algebra

generated by symbols Qk for k > 0 and B Qk for k > 0 of degree 2k(p-1) and
2k(p-1)-1 respectively. The relations are generated by the Adem relatioms

8 %07 = [ ™ (“"iéfil‘”‘l) 8 S (1.2)
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= § g=p* ((p"lf,ﬁ;f){l) g 5Q""S™Igq]
]

for r > ps

where € = 0 or 1 and BB = 0 where B is the mod p Bockstein.

REMARK 1.3. If p = 2 the Dyer Lashof algebra is usually defined as consisting
of operations Qk for k > 0 of degree k subject to the Adem relations

above that do not contain B. It is easy to check that the mod 2 operation

Bst in Definition 1.1 of degree 2k-ec satisfies the usual mod 2 relatiomns for
sz_s. Thus we need not make special cases in our theorems for p odd and even.
In some examples below we will, however, use the standard mod 2 notation for
Dyer Lashof operatiomns.

Let A be a graded augmented Z/p algebra with augmentation ideal A. The

% %
cohomology H ’k(A)=ExtA’k (z/p, Z/p) is defined to be the cohomology of a

projective resolution of the A module Z/p. For example, let ﬁ* kA =3®..®A
3
(k times) be the reduced bar comstruction on A. There are maps

dj : B*,kA - B*,k—lA for 3 =1, ..., k-1

given by dj(al®..,®a.k) = al®"’®ajaj+l® ®ak

It is well known that, with d = [ (-D%d, + B, \a> B, .4 8, .4

is a complex whose cohomology, i.e. the cohomology of Hom (ﬁ* A Z/p), is
?

Ext;‘f‘m/p, z/p) [M1].

*
3

- *
The large size of B (A) makes direct computation of ExtA (z/p, Z/p)

& &
2
very difficult., If A is a polynomial or exterior algebra, then Koszul

constructed a small chain equivalent subcomplex of E* 4 (A) making computations
b

trivial. Priddy [Pl] generalized this construction to an important class of
algebras, the homogeneous Koszul algebras. These algebras have generators

{ai} and basic relations of the form

- o . 1.
a_a_ Y e(d,j,r,s) a;a, (1.4)
Note that the length of a word in such an algebra is well defined and gives a
secondary grading to A,

It is clear that Rp is a homogeneous Koszul algebra with generators

{Qo, BQl, Ql, ... } and with the Adem relations (1.2)., Since P° = 1, Ap

is not a homogeneous Koszul algebra. For example, Sq3 Sq4 = Sq7 + Sq6 Sql is

not a homogeneous relation. The algebra AP(L) of Steenrod operations for

restricted Lie algebras is isomorphic to AP except that the relation PP =1
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is replaced by the relation P°=0. It is a homogeneous Koszul algebra. See

[P1] and [P2] and [M3] for more details.
Note that Ap and AP(L) are isomorphic as graded Z/p modules., A basis for

each consists of the Steenrod admissible sequences. In the next section we will

distinguish between the elements Pl e Ap and Pi = AP(L).

DEFINITION 1.5. Let A be a homogeneous Koszul algebra with generators

{ai} . Then the Koszul subcomplex ﬁ*’*(A) of g*,*(A) is generated by sums of
the form o =) Cok ail,0t®"'®aik,a

satisfying dj w=0 for j =1, ..., k=1. The differential on K* (&) is
3

trivial,

THEOREM 1.6.  The homology of B, ,(A) is isomorphic to K, ,(A).
b 3

Proof: See Theorem 3.8 [P1].

EXAMPLE 1.7.  If A =R, then R, ,(A) has basis {8%Q"}. K, ,(A) is generated
3 L]

by the "Adem relations'"
s mEndt § s n_r+s—~t t
U @e° - I c 8T @85
kr _
For any k and r, the element BQp &) ...(:)BQI is in K, k(A).

Although Theorem 1,6 theoretically determines the homology and thus the

cohomology of Rp’ the form of the answer i1s too complicated. Priddy observed

that the dual is far simpler.

DEFINITION 1.8.  Let A be a homogeneous Koszul algebra with generators

{ai} of degree di and relations (1.4). Then the coKoszul complex is the
homogeneous Koszul algebra with generators {ai} of degree di + 1 and relations

vy 5 L
-— 4 = - - H 7 -
(-1) aiaj z (-1) c(l,J,r,s)uruS

where LI deg o + (deg(au)—l)(dEE(ﬁv)“l)-

H

* % ook K
PROPOSITICN 1.9, With the above notation Extq’ (Z/p, Z/p) v K ? (A).

Proof: Theorem 2.5 of [P1].

* ok Nk ok
THEOREM 1.10, Extg’ (2/p, 2/p) ¥ AT(L).
) P
Proof: The generators of the homogeneous Koszul algebra Rp are the elements

fBEQl: € =0 or1land €+ 1i>0} Thus the generators of its cohomology are
corresponding classes Ue,i of degree 2i{p-1)-e +1, Note that the degree is

the same as that of BGPI (S AP(L) where ¢ +6= 1,

By the equations in (1.2) and (1.8) there are four sets of relations



4 DAVID KRAINES AND THOMAS LADA

involving ot 06’J depending on the values of £ and . For example if

e =40 =1, then

[P PR IS I -3 -1y T+ ((p-l)-(J—s)—l) RPN B
pi-r-1

where the sum is taken over pairs (r,s) with i+j = r+s and r > ps. In
1,% Ul,j

particular there is no relation for ¢ if 1 > pj since there are no

such terms on the right side of equation (1.2). If we identify cl’l with

P' and use the equality |“ : {) = (% i'v) we obtain the Adem relatiom
pipd _ ) (‘1)i+s (?p—izgg—s)-{) pi*i-s ps for i < pj.

Similarly if e = 1 and § = 0, then the relation becomes

O'l,igo)j - = z (‘“l)r-i-j ((P"‘l). (j"'s)"‘l) cl’rco’s
pJ=r
™ (EDEe) et

corresponding to the Adem relation

PiBPj - _ X (_1)i+s ({pjl) (j-—s)—l) Pi+j—sBPs
i-ps-1

i-ps

£ 7 (it (?p—l)(j—s)) apiti-sps

If € = 0, then we get similar relations which correspond to applying B to the
above (Steenrod) Adem relations.

REMARK 1,11. These results imply that there is a nomsingular pairing

b3 4 -
AT @R, R) > z/p

determined by
l1]if 8§+ e =1 and a =5

< g® P?, 8%° > =
0 otherwise

and

£ I

PPl 7 %P ®@u > = § <62, 88Q% <Pt u >,

In particular, <BPI, w> = <PI, Buw>,

If p = 2 and we use standard notation, then the pairing is determined by

atl b _ 1 ifa=5%
< Bq s 2= 0 otherwise.
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9.5

For example (with standard notation) Q8Q2 -+ Q6Q4 + Q°Q =0, Thus
7

0="® + @+ ® € Ry ,R) and<5q°5q> 6> =<5q754°,0 > =

<Sq6Sq6, w > =1, Note that by the Steenrod Adem relations Sq7Sq5 = SqQSq3 and

Sqésq6 = SqllSql + SquSq2 + SqQqu. This process allows us to compute Adem

relations '"backwards." For example, to find out which nonadmissible operations

b , ; i . ;
Sanq contain Sq95q3 in their admissible expansion, first expand Q8Q2 to get

Q6Q4 + QSQ5 and then replace these summands by Sq7Sq5 and Sq6Sq6.
* =2
§ 2. The right action of A_ on H (X; Z/p) induces an adjoint action of Ap
on H (X; Z/p) determined by <B€Pau, x> = <u, Pi 8°x > . If X is an infinite
loop space, then the following Nishida relations hold [N], [M4]:
a.c. _ at+i (c-a) (p-1) c=-ati i
Pl z = Z (~1) ( Sepl Q By @
. s 3 (2.1
c _ at+i (c-a) (p-1)-1 c-at+ii
PEBQ°x = ] (-1) ( pik? BQ Px
ati {e-a) (p~1) c-a+i i
+ ¥ (-1 ( i Q P X,
REMARK 2.2, For p=2 if we identify 8°P? with Sq2a+E and, as in section 1,
BDQC with ch-s, then the standard Nishida relations follow:

a.c c-a c-a+i_ i
Sq;Q = ) (—21) Q Sqy -
These formulae are not sufficient to make Rp into an A;p module. For

0
example with p=2 and using standard notation Q5Q = QlQ4 but
0 | &
qu gQ5Q ) = Q3QO = Qle 0= qu*(QlQ'). It is probably possible to extend
the Nishida relations so that Rp does become an Agp module. Indeed there is

evidence to believe that this will happen if we make the conventions that

Q:L =0ifi<0 and{ ®Y= ™ lif m, n > 0.  Rather than pursue this avenue,
=q B =

we opt for the following simpler and geometrically more natural approach.

Recall [CLM] that if I = (€, a., «c., € s ak) is a sequence such that

l)

€. = 0 or 1 and a; > ¢,, then the (Dyer Lashof) excess of I (or QI) is

i i 12

k
e(I) = 2&1 ~ By F E [2aj (p—l)wsj}. (2:3)
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Let E(0) be the ideal of Rp generated by the QI of negative excess., Then the

algebra RP(O) = RP/E(O) is isomorphic to QH*(QmSw;Z/p), the quotient module of

w co N
indecomposable homology classes of @ § = lim leN {DL], [M4]. It follows

->

immediately from this isomorphism that RP(O) is an A;p module.

Now let E* k(0) be the subcomplex of B (Rp) generated by elements

* Kk
QHLGQ... @Q(fﬁlsatisfying (Il,...,Ik) = (J,K,L) where e(K) < 0. If we assume

that Ij is (Dyer Lashof) admissible for each j, then this condition is equi-

valent to saying that for some j,e(I.,) < Z deg (Qlt). Alternatively
t>]

QIl “an QIk vanishes on all homeclogy classes purely for excess reasons.

In analogy with Miller's definition of UnTor [M5], we define

* %k _ - '
UnExt,’ (Z/p, Z/p) to be the cohomology of the Z/p dual of B, *(RP)/B* kO
3 3

R
P
* —k *
PROPOSITION 2.4, UnExtR & (z/p, Z/p) N R ’k(R ):tAP(L) s as Z/p modules.
P P
Proof: As noted by Miller in Proposition 3.1.2 [M5],

Priddy's proof of our Theorem 1.6 extends to show that

ﬁ*,*(RP)/E*’*(O) is chain equivalent to i*,*(RP)/i*’*(RP)F\ E*’*(O). Since
(Dyer Lashof) Adem relations involve elements QaQb with a > pb, in particular
of positive excess, it is easy to see that elements of E* k(Rp) are sums with
]
at least one summand not in E*’*(O). Thus R*,*(Rp)/(ﬁ*,*(Rp)r) E*’*(O)) is
iscomorphic to K* *(Rp)'
- |

This proposition says that A (L) may be considered to be either the module
generated by all sequences le pal § %% Bekpak subject to the Agemarelations

. , Epy
or by the subset of those sequences satisfying 2aj + sj > I degB P 5 subject
to the same relations. Since each module has the set of admissible sequences
as basis, this is obvious.

REMARK 2.5, Consider the quotient complex E* *(RP)/E* x(m) 'generated" by
) 3

l®... 0™ with I, adnissible and with e(I,) > (] deg %) 4 @ fa@ aT1
€53

j. Let f? be the graded module Ti =Z/pifm=nand 0 if m # n. Then,

following Miller, we can define UnExtR (z/p, Tg) to be the cohomology of
P

_ - *
(B* *(Rp)/B* *(m)) . It can be shown that this cohomology is isomorphic to
3 2
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the submodule of AP(L) generated by admissible sequences
€
851 PAL .., 8%k PPk with 2ak + g > m. This construction is important in

studying the Miller spectral sequence [M5], [KL1l], [KL2].

The (Steenrod) Adem relations induce a right Ap module structure on

% *
AP(L) k as follows. Assume that SiPiPi € AP(L) k is admissible where € = 0

or 1 and we distinguish elements of AP(L) by using the subscript L. Then

B(BL L L) (e + 1) BLPLPL Papf =0 if a# 0 and I = @, and

anpbpl  _ ( ati (p-1) (b=i)-1 at+b-i_i.T .
PP, = |1 D ( amni PITUTIPIPL if a < pb

0 if a > pb

\

(2.6)
_ _yati f(p-1) (b-1) atb-1ipi T 46 %

PBLLL(_Z(D (a—pi ) )Py PP tace

at+i-1 (p=1) (b-i)-1 a+b-1 i, I

—

\ 0 ifa>pb.

REMARK 2.7. The assumption that PLPL be admissible is necessary. For example,

Diny 2 ; 6 1 11 1
Sq” Sq 1= 0 while Sq (Sq qu L) = Sq (8q (8q L) = 8q77 Sq L -

S % %
THEOREM 2.8.  Extp’ (2Z/p, Z/p) i Ap(L) *" as bigraded Ap modules.

p
Proof: We must show that
< PaPi, W >=< PL,P w > where P = g° PL z is admissible in Ap(L) and where

w e E* k(R ). Assume inductively that this equation holds for sequences of

" : _ 5. e 1 = 1ot
length < k. Write w= ) 8Q ®u' for o' = §,c € K, e 1(R ).

For p=2, this theorem is essentially proven in Sectiom 4 of [M5]. The

general proof breaks up into four cases depending om & and §.
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CASE 1. €=8 = 0, Then by (1.11)

I}

L

and

< P? Z, P: (Qc® w') >=I n, <Plzz, Qc-—a+t @Pi w' >

CASE 2. €e=0and § = 1.

We first expand the left side to cbtain

P PEZ,PiBQC &y Z (_l)a+i (?c—a)(p—l)-l) " PEZ,BQC_a+i{:) Pi it 5

a-pi

b c-a+i .
+ Z Fy € PLZ’Q ® B8P, w' >

1yt ((c—a) (p~1)-1) <z Pu> i

a-pi

]
I

c—-a+ti

0 otherwise.

In particular, this is 0 if (c-a)(p-1)-1 < a-pi, i.e. if b=c-ati <

g6

If a > pb so that PaP? z=0 by (2.6), then either a > ¢ so that

&

a
Plaq

=0, or ¢ > a > pb so that the binomial coefficient above is 0., If

a < pb, then

& Papi z, BQC®N' 4 =Z (_l)a-}-i ((p_]ﬂ'_)_é:“i>—l><?’i+b"i?iz, BQC Ea'>

/

- < (-—1)a+i ((P—l) (b_i)-l> < Pi z, w' > if atb-i = ¢

a-pi

\ 0 if atb-i # c.

§ e i i
Thus the two coefficients agree and < Pz, w' > = < g P, w'> by the

induction hypothesis,

The cases where € = 1 are almost identical and will be left to the reader.
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