A FINITE DIMENSIONAL A_{∞} ALGEBRA EXAMPLE

MICHAEL P. ALLOCCA AND TOM LADA

Dedicated to Tornike Kadeishvili on the occasion of his 60th birthday

ABSTRACT. We construct an example of an A_{∞} algebra structure defined over a finite dimensional graded vector space.

Introduction

 A_{∞} algebras (or sha algebras) and L_{∞} (or sh Lie algebras) have been topics of current research. Construction of small examples of these algebras can play a role in gaining insight into deeper properties of these structures. These examples may prove useful in developing a deformation theory as well as a representation theory for these algebras.

In [2], an L_{∞} algebra structure on the graded vector space $V = V_0 \oplus V_1$ where V_0 is a 2 dimensional vector space, and V_1 is a 1 dimensional space, is discussed. This surprisingly rich structure on this small graded vector space was shown by Kadeishvili and Lada, [3], to be an example of an open-closed homotopy algebra (OCHA) defined by Kajiura and Stasheff [4]. In an unpublished note [1] M. Daily constructs a variety of other L_{∞} algebra structures on this same vector space.

In this article we add to this collection of structures on the vector space V by providing a detailed construction of non-trivial A_{∞} algebra data for V.

1. A_{∞} Algebras

We first recall the definition of an A_{∞} algebra (Stasheff [6]).

Definition 1.1. Let V be a graded vector space. An A_{∞} structure on V is a collection of linear maps $m_k: V^{\otimes k} \to V$ of degree 2-k that satisfy the identity

$$\sum_{\lambda=0}^{n-1} \sum_{k=1}^{n-\lambda} \alpha m_{n-k+1} (x_1 \otimes \cdots \otimes x_{\lambda} \otimes m_k (x_{\lambda+1} \otimes \cdots \otimes x_{\lambda+k}) \otimes x_{\lambda+k+1} \otimes \cdots \otimes x_n) = 0$$
where $\alpha = (-1)^{k+\lambda+k\lambda+kn+k(|x_1|+\cdots+|x_{\lambda}|)}$, for all $n \geq 1$.

This utilizes the cochain complex convention. One may alternatively utilize the chain complex convention by requiring each map m_k to have degree k-2.

We will define the desuspension of V (denoted $\downarrow V$) as the graded vector space with indices given by $(\downarrow V)_n = V_{n+1}$, and the desuspension operator, $\downarrow: V \to \downarrow V$ (resp. suspension operator $\uparrow: \downarrow V \to V$) in the natural sense.

Stasheff also showed that an A_{∞} structure on V is equivalent to the existence of a degree 1 coderivation $D: T^* \downarrow V \to T^* \downarrow V$ with the property $D^2 = 0$. Here, $T^* \downarrow V$ is the tensor coalgebra on the graded vector space $\downarrow V$.

Such a coderivation is constructed by defining

$$D := \sum_{k=1}^{\infty} m'_k, \text{ where } m'_k : \downarrow V^{\otimes k} \to \downarrow V \text{ is given by first defining } m'_k := (-1)^{\frac{k(k-1)}{2}} \downarrow \circ m_k \circ \uparrow^{\otimes k}$$

and then extending each m'_k to a coderivation on $T^* \downarrow V$.

2. A FINITE DIMENSIONAL EXAMPLE

Let V denote the graded vector space given by $V = \bigoplus V_n$ where V_0 has basis $\langle v_1, v_2 \rangle$, V_1 has basis $\langle w \rangle$, and $V_n = 0$ for $n \neq 0, 1$. Define a structure on V by the following linear maps $m_n : V^{\otimes n} \to V$:

$$m_{1}(v_{1}) = m_{1}(v_{2}) = w$$
For $n \geq 2$: $m_{n}(v_{1} \otimes w^{\otimes k} \otimes v_{1} \otimes w^{\otimes (n-2)-k}) = (-1)^{k} s_{n} v_{1}, \ 0 \leq k \leq n-2$

$$m_{n}(v_{1} \otimes w^{\otimes (n-2)} \otimes v_{2}) = s_{n+1} v_{1}$$

$$m_{n}(v_{1} \otimes w^{\otimes (n-1)}) = s_{n+1} w$$

where $s_n = (-1)^{\frac{(n+1)(n+2)}{2}}$, and $m_n = 0$ when evaluated on any element of $V^{\otimes n}$ that is not listed above.

Theorem 2.1. The maps defined above give the graded vector space V an A_{∞} algebra structure.

It is worth noting that this assumes the cochain convention regarding A_{∞} algebra structures. The proof of this theorem relies on two lemmas:

Lemma 2.2. Let $m'_n : \downarrow V^{\otimes n} \to \downarrow V := (-1)^{\frac{n(n-1)}{2}} \downarrow \circ m_n \circ \uparrow^{\otimes n}$ where $\downarrow V$ denotes the desuspension of V. Under the preceding definitions for m_n and V, we have the following definitions for m'_n :

$$m'_{1} = \downarrow m_{1}$$
For $n \geq 2$: $m'_{n}(\downarrow v_{1} \otimes \downarrow w^{\otimes k} \otimes \downarrow v_{1} \otimes \downarrow w^{\otimes (n-2)-k}) = \downarrow v_{1}, \ 0 \leq k \leq n-2$

$$m'_{n}(\downarrow v_{1} \otimes \downarrow w^{\otimes (n-2)} \otimes \downarrow v_{2}) = \downarrow v_{1}$$

$$m'_{n}(\downarrow v_{1} \otimes \downarrow w^{\otimes (n-1)}) = \downarrow w$$

Remark 2.3. Each m'_n is of degree 1.

Lemma 2.4. Let $D = \sum_{k=1}^{\infty} m'_k$ where m'_k is defined above. Let $n \geq 2$ be a positive integer. Suppose $D^2(\downarrow x_1 \otimes \downarrow x_2 \otimes \cdots \otimes \downarrow x_m) = 0 \ \forall \ x_i \in V, \ 1 \leq m \leq n-1$.

Then
$$D^2(\downarrow x_1 \otimes \downarrow x_2 \otimes \cdots \otimes \downarrow x_n) = \sum_{i+j=n+1} m'_i m'_j (\downarrow x_1 \otimes \downarrow x_2 \otimes \cdots \otimes \downarrow x_n)$$

Proof of Lemma 2.2. $m'_1(x) = (-1)^0 \downarrow \circ m_1 \circ \uparrow (\downarrow x) = \downarrow m_1(x)$ for any x.

Now let $n \geq 2$. The majority of the work here is centered around computing the signs associated with the graded setting. The elements x_i and the maps \uparrow , \downarrow , and m_n all contribute to an overall sign via their degrees. Observing these signs, we find

$$m'_{n}(\downarrow x_{1} \otimes \downarrow x_{2} \otimes \cdots \otimes \downarrow x_{n}) = (-1)^{\frac{n(n-1)}{2}} \downarrow \circ m_{n} \circ \uparrow^{\otimes n} (\downarrow x_{1} \otimes \downarrow x_{2} \otimes \cdots \otimes \downarrow x_{n})$$

$$= \begin{cases} (-1)^{\sum_{i=1}^{n/2} |x_{2i-1}|} \downarrow m_{n}(x_{1} \otimes x_{2} \otimes \cdots \otimes x_{n}) & \text{if n is even.} \\ (-1)^{\sum_{i=1}^{(n-1)/2} |x_{2i}|} \downarrow m_{n}(x_{1} \otimes x_{2} \otimes \cdots \otimes x_{n}) & \text{if n is odd.} \end{cases}$$

First consider $m'_n(\downarrow v_1 \otimes \downarrow w^{\otimes k} \otimes \downarrow v_1 \otimes \downarrow w^{\otimes (n-2)-k}), \ 0 \leq k \leq n-2$:

Case 1: n is even, k is even. Then

$$m'_{n}(\downarrow v_{1} \otimes \downarrow w^{\otimes k} \otimes \downarrow v_{1} \otimes \downarrow w^{\otimes (n-2)-k}) = (-1)^{|v_{1}|+(\frac{n}{2}-1)|w|} \downarrow m_{n}(v_{1} \otimes w^{\otimes k} \otimes v_{1} \otimes w^{\otimes (n-2)-k})$$

$$= (-1)^{0+\frac{n}{2}-1}(-1)^{k} s_{n} \downarrow v_{1}$$

$$= (-1)^{\frac{n}{2}-1}(-1)^{\frac{(n+1)(n+2)}{2}} \downarrow v_{1}$$

$$= (-1)^{\frac{n}{2}-1}(-1)^{(n+1)(\frac{n}{2}+1)} \downarrow v_{1} \quad (*)$$

If $\frac{n}{2}$ is even, then $(*) = (-1)^{\text{odd}}(-1)^{\text{odd*odd}} \downarrow v_1 = \downarrow v_1$. If $\frac{n}{2}$ is odd, then $(*) = (-1)^{\text{even}}(-1)^{\text{odd*even}} \downarrow v_1 = \downarrow v_1$.

Case 2: n is even, k is odd. Then

$$m'_{n}(\downarrow v_{1} \otimes \downarrow w^{\otimes k} \otimes \downarrow v_{1} \otimes \downarrow w^{\otimes (n-2)-k}) = (-1)^{2|v_{1}|+(\frac{n}{2}-2)|w|} \downarrow m_{n}(v_{1} \otimes w^{\otimes k} \otimes v_{1} \otimes w^{\otimes (n-2)-k})$$

$$= (-1)^{0+\frac{n}{2}-2}(-1)^{k}s_{n} \downarrow v_{1}$$

$$= -(-1)^{\frac{n}{2}}(-1)^{\frac{(n+1)(n+2)}{2}} \downarrow v_{1}$$

$$= -(-1)^{\frac{n}{2}}(-1)^{(n+1)(\frac{n}{2}+1)} \downarrow v_{1} \quad (**)$$

If $\frac{n}{2}$ is even, then $(**) = -(-1)^{\text{even}}(-1)^{\text{odd*odd}} \downarrow v_1 = \downarrow v_1$. If $\frac{n}{2}$ is odd, then $(**) = -(-1)^{\text{odd}}(-1)^{\text{odd*even}} \downarrow v_1 = \downarrow v_1$.

Case 3: n is odd, k is even. Then

$$m'_{n}(\downarrow v_{1} \otimes \downarrow w^{\otimes k} \otimes \downarrow v_{1} \otimes \downarrow w^{\otimes (n-2)-k}) = (-1)^{|v_{1}| + (\frac{n-1}{2}-1)|w|} \downarrow m_{n}(v_{1} \otimes w^{\otimes k} \otimes v_{1} \otimes w^{\otimes (n-2)-k})$$

$$= (-1)^{0+\frac{n-1}{2}-1}(-1)^{k}s_{n} \downarrow v_{1}$$

$$= (-1)^{\frac{n-1}{2}-1}(-1)^{\frac{(n+1)(n+2)}{2}} \downarrow v_{1}$$

$$= -(-1)^{\frac{n-1}{2}}(-1)^{\frac{(n+1)}{2}(n+2)} \downarrow v_{1} \quad (***)$$

If $\frac{n-1}{2}$ is even, then $(***) = -(-1)^{\text{even}}(-1)^{\text{odd*odd}} \downarrow v_1 = \downarrow v_1$. If $\frac{n-1}{2}$ is odd, then $(***) = -(-1)^{\text{odd}}(-1)^{\text{even*odd}} \downarrow v_1 = \downarrow v_1$.

Case 4: n is odd, k is odd. Then

$$m'_{n}(\downarrow v_{1} \otimes \downarrow w^{\otimes k} \otimes \downarrow v_{1} \otimes \downarrow w^{\otimes (n-2)-k}) = (-1)^{(\frac{n-1}{2})|w|} \downarrow m_{n}(v_{1} \otimes w^{\otimes k} \otimes v_{1} \otimes w^{\otimes (n-2)-k})$$

$$= (-1)^{\frac{n-1}{2}}(-1)^{k} s_{n} \downarrow v_{1}$$

$$= -(-1)^{\frac{n-1}{2}}(-1)^{\frac{(n+1)(n+2)}{2}} \downarrow v_{1}$$

$$= -(-1)^{\frac{n-1}{2}}(-1)^{\frac{(n+1)(n+2)}{2}} \downarrow v_{1} \quad (****)$$

If $\frac{n-1}{2}$ is even, then $(****) = -(-1)^{\text{even}}(-1)^{\text{odd}*\text{odd}} \downarrow v_1 = \downarrow v_1$. If $\frac{n-1}{2}$ is odd, then $(****) = -(-1)^{\text{odd}}(-1)^{\text{even}*\text{odd}} \downarrow v_1 = \downarrow v_1$.

Hence
$$m'_n(\downarrow v_1 \otimes \downarrow w^{\otimes k} \otimes \downarrow v_1 \otimes \downarrow w^{\otimes (n-2)-k}) = \downarrow v_1, \ 0 \le k \le n-2$$

Now consider $m'_n(\downarrow v_1 \otimes \downarrow w^{\otimes (n-2)} \otimes \downarrow v_2)$:

Case 1: n is even. Then

$$m'_{n}(\downarrow v_{1} \otimes \downarrow w^{\otimes(n-2)} \otimes \downarrow v_{2}) = (-1)^{|v_{1}| + (\frac{n}{2} - 1)|w|} m_{n}(\downarrow v_{1} \otimes \downarrow w^{\otimes(n-2)} \otimes \downarrow v_{2})$$

$$= (-1)^{\frac{n}{2} - 1} s_{n+1} \downarrow v_{1}$$

$$= (-1)^{\frac{n}{2} - 1} (-1)^{\frac{(n+2)(n+3)}{2}} \downarrow v_{1}$$

$$= (-1)^{\frac{n}{2} - 1} (-1)^{(\frac{n}{2} - 1)(n+3)} \downarrow v_{1} \quad (*)$$

If $\frac{n}{2}$ is even, then $(*) = (-1)^{\text{odd}}(-1)^{\text{odd*odd}} \downarrow v_1 = \downarrow v_1$. If $\frac{n}{2}$ is odd, then $(*) = (-1)^{\text{even}}(-1)^{\text{even*odd}} \downarrow v_1 = \downarrow v_1$. Case 2: n is odd. Then

$$m'_{n}(\downarrow v_{1} \otimes \downarrow w^{\otimes (n-2)} \otimes \downarrow v_{2}) = (-1)^{(\frac{n-1}{2})|w|} m_{n}(\downarrow v_{1} \otimes \downarrow w^{\otimes (n-2)} \otimes \downarrow v_{2})$$

$$= (-1)^{\frac{n-1}{2}} s_{n+1} \downarrow v_{1}$$

$$= (-1)^{\frac{n-1}{2}} (-1)^{\frac{(n+2)(n+3)}{2}} \downarrow v_{1}$$

$$= (-1)^{\frac{n-1}{2}} (-1)^{(n+2)(\frac{n+3}{2})} \downarrow v_{1} \quad (**)$$

If $\frac{n-1}{2}$ is even, then $(**) = (-1)^{\text{even}} (-1)^{\text{odd*even}} \downarrow v_1 = \downarrow v_1$. If $\frac{n-1}{2}$ is odd, then $(**) = (-1)^{\text{odd}} (-1)^{\text{odd*odd}} \downarrow v_1 = \downarrow v_1$.

Hence
$$m'_n(\downarrow v_1 \otimes \downarrow w^{\otimes (n-2)} \otimes \downarrow v_2) = \downarrow v_1$$

The preceding arguments for cases 1 and 2 for $m'_n(\downarrow v_1 \otimes \downarrow w^{\otimes (n-2)} \otimes \downarrow v_2)$ may be repeated for $m'_n(\downarrow v_1 \otimes \downarrow w^{\otimes (n-1)})$.

Thus
$$m'_n(\downarrow v_1 \otimes \downarrow w^{\otimes (n-1)}) = \downarrow w$$

Proof of Lemma 2.4. We first note that

$$D^{2}(\downarrow x_{1} \otimes \downarrow x_{2} \otimes \cdots \otimes \downarrow x_{n}) = \sum_{i+j \leq n+1} m'_{i} m'_{j}(\downarrow x_{1} \otimes \downarrow x_{2} \otimes \cdots \otimes \downarrow x_{n})$$

since $m'_k(\downarrow x_1 \otimes \downarrow x_2 \otimes \cdots \otimes \downarrow x_l) = 0$ for k > l. So

$$D^{2}(\downarrow x_{1} \otimes \downarrow x_{2} \otimes \cdots \otimes \downarrow x_{n}) = \sum_{i+j \leq n} m'_{i} m'_{j}(\downarrow x_{1} \otimes \downarrow x_{2} \otimes \cdots \otimes \downarrow x_{n})$$
$$+ \sum_{i+j=n+1} m'_{i} m'_{j}(\downarrow x_{1} \otimes \downarrow x_{2} \otimes \cdots \otimes \downarrow x_{n})$$

Hence it suffices to show that $\sum_{i+j\leq n} m_i' m_j' (\downarrow x_1 \otimes \downarrow x_2 \otimes \cdots \otimes \downarrow x_n) = 0$

Consider $\sum_{i+j\leq n} m_i' m_j' (\downarrow x_1 \otimes \downarrow x_2 \otimes \cdots \otimes \downarrow x_n)$: Since $i+j\leq n$, we can break this sum up

into 4 different types of of elements in $\downarrow V^{\otimes k}$ based on whether the first and last terms in the tensor product contain m'_i or m'_j :

- Type 1: Elements with first term $\downarrow x_1$ and last term $\downarrow x_n$ (example: $\downarrow x_1 \otimes \downarrow x_2 \otimes m'_1(\downarrow x_3) \otimes m'_2(\downarrow x_4 \otimes \downarrow x_5) \otimes \downarrow x_6$)
- Type 2: Elements with first term $\downarrow x_1$ and last term containing m'_k for some k (example: $\downarrow x_1 \otimes \downarrow x_2 \otimes m'_3 (\downarrow x_3 \otimes m'_2 (\downarrow x_4 \otimes \downarrow x_5) \otimes \downarrow x_6)$)
- Type 3: Elements with first term containing m'_k for some k and last term $\downarrow x_n$

(example: $m'_2(\downarrow x_1 \otimes \downarrow x_2) \otimes m'_1(\downarrow x_3) \otimes \downarrow x_4 \otimes \downarrow x_5 \otimes \downarrow x_6)$

• Type 4: Elements with first term containing m'_k and last term containing m'_l for some k, l (example: $m'_2(\downarrow x_1 \otimes \downarrow x_2) \otimes \downarrow x_3 \otimes \downarrow x_4 \otimes m'_2(\downarrow x_5 \otimes \downarrow x_6)$)

Now each term of type 1 must be produced by $m'_i m'_j$ with $i + j \leq n - 1$. Hence, by factorization of tensor products, all possible terms of type 1 are given by:

$$(-1)^{2|x_1|-2} \Big(\downarrow x_1 \otimes \Big(\sum_{i+j \leq n-1} m_i' m_j' (\downarrow x_2 \otimes \downarrow x_3 \otimes \cdots \otimes \downarrow x_{n-1}) \Big) \Big) \otimes \downarrow x_n$$

$$= \Big(\downarrow x_1 \otimes \Big(D^2 (\downarrow x_2 \otimes \downarrow x_3 \otimes \cdots \otimes \downarrow x_{n-1}) \Big) \Big) \otimes \downarrow x_n$$

$$= \Big(\downarrow x_1 \otimes 0 \Big) \otimes \downarrow x_n$$

$$= 0$$

since $D^2 = 0$ when evaluated on n-2 terms.

Now since all terms of type 1 form a collection of elements in $\downarrow V^{\otimes k}$ that sum up to 0, we can duplicate this collection multiple times. This is significant when we consider all terms of type 2 in conjunction with a set of type 1 terms. Combining all type 2 terms with a set of type 1 terms and factoring tensor products, we get:

$$(-1)^{2|x_1|-2} \downarrow x_1 \otimes \left(\sum_{i+j \le n} m_i' m_j' (\downarrow x_2 \otimes \downarrow x_3 \otimes \cdots \otimes \downarrow x_n) \right)$$

$$= \downarrow x_1 \otimes \left(D^2 (\downarrow x_2 \otimes \downarrow x_3 \otimes \cdots \otimes \downarrow x_n) \right)$$

$$= \downarrow x_1 \otimes 0$$

$$= 0$$

since $D^2 = 0$ when evaluated on n-1 terms.

Hence, all type 2 added together equal 0. All type 3 terms added together equal 0 following a similar argument .

We now consider type 4 terms. Consider an arbitrary element of type 4:

$$m'_i(\downarrow x_1 \otimes \cdots \otimes \downarrow x_i) \otimes \downarrow x_{i+1} \otimes \cdots \otimes \downarrow x_{n-j} \otimes m'_i(\downarrow x_{n-j+1} \otimes \cdots \otimes \downarrow x_n)$$

Consider how this arbitrary element is generated: We begin with

$$m_i'm_j'(\downarrow x_1\otimes\cdots\otimes\downarrow x_n)$$

We then apply m'_j to the last j terms, which yields:

$$(-1)^{|x_1|+\cdots+|x_{n-j}|-(n-j)}m_i'(\downarrow x_1\otimes\cdots\otimes\downarrow x_{n-j}\otimes m_i'(\downarrow x_{n-j+1}\otimes\cdots\otimes\downarrow x_n))$$

Finally we apply m'_i to the first i terms:

$$(-1)^{|x_1|+\cdots+|x_{n-j}|-(n-j)}m_i'(\downarrow x_1\otimes\cdots\otimes\downarrow x_i)\otimes\downarrow x_{i+1}\otimes\cdots\cdots\otimes\downarrow x_{n-j}\otimes m_j'(\downarrow x_{n-j+1}\otimes\cdots\otimes\downarrow x_n) \ (*)$$

Each of these arbitrary type 4 elements can be paired up with an element generated by $m'_i m'_i$ as follows: Begin with

$$m_j'm_i'(\downarrow x_1\otimes\cdots\otimes\downarrow x_n)$$

Then apply m'_i to the first i terms:

$$m'_i(m'_i(\downarrow x_1 \otimes \cdots \otimes \downarrow x_i) \otimes \downarrow x_{i+1} \otimes \cdots \otimes \downarrow x_n)$$

Finally, apply m'_{j} to the last j terms:

$$(-1)^{|x_1|+\cdots+|x_{n-j}|-(n-j)+1}m_i'(\downarrow x_1\otimes\cdots\otimes\downarrow x_i)\otimes\downarrow x_{i+1}\otimes\cdots\cdots\otimes\downarrow x_{n-j}\otimes m_j'(\downarrow x_{n-j+1}\otimes\cdots\otimes\downarrow x_n)\quad (**)$$

Since these type 4 elements were arbitrary, and (*) + (**) = 0, all type 4 terms added together equal 0. Hence, all type 1, 2, 3, and 4 terms yield 0, and so

$$\sum_{i+j\leq n} m_i' m_j' (\downarrow x_1 \otimes \downarrow x_2 \otimes \cdots \otimes \downarrow x_n) = 0$$

Proof of Theorem 2.1. It is clear that each map m_n is of degree 2-n. To prove that these maps yield an A_{∞} structure, one may verify that they satisfy the identity given in definition 1.1. However, this is a rather daunting task, due to the varying signs, s_n , accompanying the m_n maps. To utilize an alternative method of proof, we construct a degree 1 coderivation, D, as described in section 1.

In the context of Theorem 2.1, we may use the definition for m'_k given by Lemma 2.2 to construct D. It then suffices to show that $D^2 = 0$.

We aim to prove $D^2=0$ by induction on the number of inputs for D. It is worth first noting that $D=\sum_{k=1}^{\infty}m_k'$, however $D(\downarrow x_1\otimes\cdots\otimes\downarrow x_n)=\sum_{k=1}^nm_k'(\downarrow x_1\otimes\cdots\otimes\downarrow x_n)$ since $m_k'(\downarrow x_1\otimes\cdots\downarrow\otimes x_n)=0$ for $k\geq n$.

For
$$n = 1$$
, we have $D^2(\downarrow x) = m_1' m_1'(\downarrow x) = \downarrow m_1^2(x) = 0 \ \forall \ x \in V$.

For n=2, we have

$$D^{2}(\downarrow x_{1}, \downarrow x_{2}) = m'_{1}m'_{1}(\downarrow x_{1} \otimes \downarrow x_{2}) + m'_{1}m'_{2}(\downarrow x_{1} \otimes \downarrow x_{2})$$

$$+ m'_{2}m'_{1}(\downarrow x_{1} \otimes \downarrow x_{2}) + m'_{2}m'_{2}(\downarrow x_{1} \otimes \downarrow x_{2})$$

$$= m'_{1}(m'_{1}(\downarrow x_{1}) \otimes \downarrow x_{2} - (-1)^{|x_{1}|}x_{1} \otimes m'_{1}(x_{2})) + m'_{1}m'_{2}(\downarrow x_{1} \otimes \downarrow x_{2})$$

$$+ m'_{2}(m'_{1}(\downarrow x_{1}) \otimes \downarrow x_{2} - (-1)^{|x_{1}|}x_{1} \otimes m'_{1}(x_{2})) + 0$$

$$= [m'_{1}m'_{1}(\downarrow x_{1}) \otimes \downarrow x_{2} + (-1)^{|x_{1}|}m'_{1}(\downarrow x_{1}) \otimes m'_{1}(\downarrow x_{2})]$$

$$- (-1)^{|x_{1}|}[m'_{1}(x_{1}) \otimes m'_{1}(x_{2}) - (-1)^{|x_{1}|}x_{1} \otimes m'_{1}m'_{1}(x_{2})] + m'_{1}m'_{2}(\downarrow x_{1} \otimes \downarrow x_{2})$$

$$+ m'_{2}(m'_{1}(\downarrow x_{1}) \otimes \downarrow x_{2}) - (-1)^{|x_{1}|}m'_{2}(x_{1} \otimes m'_{1}(x_{2}))$$

$$= m'_{1}m'_{2}(\downarrow x_{1} \otimes \downarrow x_{2}) + m'_{2}(m'_{1}(\downarrow x_{1}) \otimes \downarrow x_{2}) - (-1)^{|x_{1}|}m'_{2}(x_{1} \otimes m'_{1}(x_{2}))$$

$$= 0 \ \forall \ x_{1}, \ x_{2} \in V$$

Now assume $D^2(\downarrow x_1 \otimes \cdots \downarrow \otimes x_{n-1}) = 0$. We aim to show that $D^2(\downarrow x_1 \otimes \cdots \downarrow \otimes x_n) = 0$: By Lemma 2.4, $D^2(\downarrow x_1 \otimes \cdots \downarrow \otimes x_n) = \sum_{i+j=n+1} m_i' m_j' (\downarrow x_1 \otimes \cdots \downarrow \otimes x_n)$, hence it suffices to show that $\sum_{i+j=n+1} m_i' m_j' (\downarrow x_1 \otimes \cdots \downarrow \otimes x_n) = 0$, $\forall x_1 \cdots x_n \in V$.

It is advantageous to approach this problem from the bottom up, since $x_1 \cdots x_n \in V$ implies calculating 3^n different combinations of elements. That is, we consider only nontrivial (nonzero) elements in the sum $\sum_{i+j=n+1} m_i' m_j' (\downarrow x_1 \otimes \cdots \downarrow \otimes x_n)$. Now since i+j=n+1, we observe that $m_i' m_j' (\downarrow x_1 \otimes \cdots \downarrow \otimes x_n) \in \downarrow V^{\otimes 1}$. Since, by definition, m_i' cannot produce the element $\downarrow v_2$, the seemingly large task of considering nontrivial $m_i' m_j' (\downarrow x_1 \otimes \cdots \downarrow \otimes x_n)$ yields only two possibilities:

$$m_i'm_j'(\downarrow x_1 \otimes \cdots \downarrow \otimes x_n) = c \downarrow v_1$$
 or $m_i'm_j'(\downarrow x_1 \otimes \cdots \downarrow \otimes x_n) = c \downarrow w$ for some constant, c.

Remark 2.5. Since production of $a \downarrow v_1$ or $\downarrow w$ relies on the number of v's and w's in the arrangement $\downarrow x_1 \otimes \cdots \downarrow \otimes x_n$, these possibilities are disjoint.

Therefore if $m'_i m'_j (\downarrow x_1 \otimes \cdots \downarrow \otimes x_n) \neq 0$ for some i + j = n + 1, then $\sum_{i+j=n+1} m'_i m'_j (\downarrow x_1 \otimes \cdots \downarrow \otimes x_n)$ contains a collection of $\downarrow v_1$'s or $\downarrow w$'s.

We first consider the manner in which $m_i'm_i'(\downarrow x_1 \otimes \cdots \downarrow \otimes x_n)$ yields a $\downarrow w$:

By defintion of m'_n , $\downarrow w$ must be produced by $m'_i(\downarrow v_1 \otimes \downarrow w^{\otimes (i-1)})$ (*). Now since a nonzero m'_j will contribute either the $\downarrow v_1$ or a $\downarrow w$ to the arrangement $\downarrow v_1 \otimes \downarrow w^{\otimes (i-1)}$, the

original arrangment $\downarrow x_1 \otimes \cdots \downarrow \otimes x_n$ must contain exactly one more 'v' $(v = v_1 \text{ or } v_2)$, for a total of two v's. It is also worth nothing that $x_1 = v_1$, otherwise $m'_i m'_j (\downarrow x_1 \otimes \cdots \downarrow \otimes x_n) = 0$.

- Case 1: $v = v_1$. Then we have $m'_i m'_j (\downarrow v_1 \otimes \downarrow w^{\otimes k} \otimes \downarrow v_1 \otimes \downarrow w^{\otimes (n-2)-k})$, $0 \leq k \leq n-2$. Now, to produce (*), m'_j must 'catch' (1) both $\downarrow v_1$'s, or (2) only the second $\downarrow v_1$.
- (1) We have $m'_j(\downarrow v_1 \otimes \downarrow w^{\otimes k} \otimes \downarrow v_1 \otimes \downarrow w^{\otimes (n-2)-k}) = \downarrow v_1, \ k+2 \leq j \leq n$. This yields $m'_i(\downarrow v_1 \otimes \downarrow w^{\otimes (n-j)}) = \downarrow w$. Now since $k+2 \leq j \leq n$, there are n-(k+2)+1 = n-k-1 such terms in $\sum_{i+j=n+1} m'_i m'_j(\downarrow v_1 \otimes \downarrow w^{\otimes k} \otimes \downarrow v_1 \otimes \downarrow w^{\otimes (n-2)-k})$.
- $(2) \text{ We have } (-1)^{|v_1|+k|w|-(k+1)} m_i' \Big(\downarrow v_1 \otimes \downarrow w^{\otimes k} \otimes \Big[m_j' (\downarrow v_1 \otimes \downarrow w^{\otimes (j-1)}) \Big] \otimes \downarrow w^{\otimes (n-2)-k-(j-1)} \Big) = \downarrow w, \ 1 \leq j \leq n-k-1. \text{ Similarly, there are } (n-k-1)-1+1 = n-k-1 \text{ such terms in } \sum_{i+j=n+1} m_i' m_j' (\downarrow v_1 \otimes \downarrow w^{\otimes k} \otimes \downarrow v_1 \otimes \downarrow w^{\otimes (n-2)-k}).$

$$\Rightarrow \sum_{i+j=n+1} m_i' m_j' (\downarrow v_1 \otimes \downarrow w^{\otimes k} \otimes \downarrow v_1 \otimes \downarrow w^{\otimes (n-2)-k}) = (n-k-1) \downarrow w - (n-k-1) \downarrow w = 0.$$

• Case 2: $v = v_2$. Then we have $m'_i m'_j (\downarrow v_1 \otimes \downarrow w^{\otimes k} \otimes \downarrow v_2 \otimes \downarrow w^{\otimes (n-2)-k})$, $0 \leq k \leq n-2$. Similarly, to produce (*), m'_j must 'catch' (1) both $\downarrow v_1$ and $\downarrow v_2$, or (2) only $\downarrow v_2$.

For (1), the only nontrivial way to do this yields:

$$m'_{n-k-1}(m'_{k+2}(\downarrow v_1 \otimes \downarrow w^{\otimes k} \otimes \downarrow v_2) \otimes \downarrow w^{\otimes (n-2)-k}) = \downarrow w$$

and for (2), the only nontrivial way to do this yields:

$$(-1)^{|v_1|+k|w|-(k+1)}m'_n(\downarrow v_1\otimes \downarrow w^{\otimes k}\otimes m'_1(\downarrow v_2)\otimes \downarrow w^{\otimes (n-2)-k}) = -\downarrow w$$

$$\Rightarrow \sum_{i+j=n+1}m'_im'_j(\downarrow v_1\otimes \downarrow w^{\otimes k}\otimes \downarrow v_1\otimes \downarrow w^{\otimes (n-2)-k}) = \downarrow w-\downarrow w = 0.$$

In either case, if $m'_i m'_j (\downarrow x_1 \otimes \cdots \downarrow \otimes x_n)$ produces $\downarrow w$'s, then

$$\sum_{i+j=n+1} m_i' m_j' (\downarrow x_1 \otimes \cdots \downarrow \otimes x_n) = 0.$$

We now consider the manner in which $m_i'm_i'(\downarrow x_1 \otimes \cdots \downarrow \otimes x_n)$ yields a $\downarrow v_1$:

By defintion of m'_n , $\downarrow v_1$ must be produced by either $m'_i(\downarrow v_1 \otimes \downarrow w^{\otimes k} \otimes \downarrow v_1 \otimes w^{\otimes (i-2)-k})$ or $m'_i(\downarrow v_1 \otimes \downarrow w^{\otimes (i-2)} \otimes \downarrow v_2)$.

• Case 1: $\downarrow v_1$ is produced by $m'_i(\downarrow v_1 \otimes \downarrow w^{\otimes k} \otimes \downarrow v_1 \otimes \downarrow w^{\otimes (i-2)-k})$.

We examine the 4 different possibilities for which m'_i can yield this arrangement:

(i) m'_j produces the first $\downarrow v_1$. (ii) m'_j produces a $\downarrow w$ in $\downarrow w^{\otimes k}$. (iii) m'_j produces the second $\downarrow v_1$. (iv) m'_j produces a $\downarrow w$ in $\downarrow w^{\otimes (i-2)-k}$.

A key observation to make here is that (i), (ii), (iii), and (iv) imply that the original arrangement $\downarrow x_1 \otimes \cdots \otimes \downarrow x_n$ must contain $\underline{\text{exactly}}$ 3 v's, once again with $x_1 = v_1$. This yields 4 subcases:

Subcase 1: We have $m_i'm_i'(\downarrow v_1 \otimes \downarrow w^{\otimes k} \otimes \downarrow v_1 \otimes \downarrow w^{\otimes l} \otimes \downarrow v_1 \otimes \downarrow w^{\otimes n-k-l-3})$:

(i) m'_i must take the first two $\downarrow v_1$'s. We have:

$$m_i'\Big(\Big[m_j'(\downarrow v_1\otimes \downarrow w^{\otimes k}\otimes \downarrow v_1\times \downarrow w^{\otimes j-k-2})\otimes \downarrow w^{\otimes l-(j-k-2)}\Big]\otimes \downarrow v_1\otimes \downarrow w^{\otimes n-k-l-3}\Big)=\downarrow v_1$$

Now $k+2\leq j\leq l+k+2$, so there are $(l+k+2)-(k+2)+1=l+1$ such terms.

(ii) m'_j must take only the second $\downarrow v_1$. We have:

$$(-1)^{|v_1|+k|w|-(k+1)}m_i'\Big(\downarrow v_1\otimes w^{\otimes k}\otimes \Big[m_j'(\downarrow v_1\otimes \downarrow w^{\otimes (j-1)})\otimes w^{\otimes l-(j-1)}\Big]\otimes \downarrow v_1\otimes \downarrow w^{\otimes n-k-l-3}\Big)=-\downarrow v_1$$

Now $1\leq j\leq l+1$, so there are $(l+1)-1+1=l+1$ such terms.

(iii) m'_i must take the second and third $\downarrow v_1$'s. We have:

$$(-1)^{|v_1|+k|w|-(k+1)}m_i'\Big(\downarrow v_1\otimes w^{\otimes k}\otimes \Big[m_j'(\downarrow v_1\otimes\downarrow w^{\otimes l}\otimes\downarrow v_1\otimes\downarrow w^{\otimes j-l-2})\Big]\otimes\downarrow w^{\otimes n-k-j+1}\Big)=-\downarrow v_1$$

Now $l+2\leq j\leq n-k-1$, so there are $(n-k-1)-(l+2)+1=n-k-l-2$ such terms.

(iv) m'_i must take only the third $\downarrow v_1$. We have:

$$(-1)^{2|v_1|+(k+l)|w|-(k+l+2)}m_i'\Big(\downarrow v_1\otimes w^{\otimes k}\otimes \downarrow v_1\otimes \downarrow w^{\otimes l}\otimes \Big[m_j'(\downarrow v_1\otimes \downarrow w^{\otimes (j-1)})\otimes \downarrow w^{\otimes n-k-l-j-2}\Big]\Big)=\downarrow v_1$$

Now $1\leq j\leq n-k-l-2$, so there are $(n-k-l-2)-1+1=n-k-l-2$ such terms.

$$\Rightarrow \sum_{i+j=n+1} m_i' m_j' (\downarrow v_1 \otimes \downarrow w^{\otimes k} \otimes \downarrow v_1 \otimes \downarrow w^{\otimes l} \otimes \downarrow v_1 \otimes \downarrow w^{\otimes n-k-l-3}) = (l+1) \downarrow v_1 - (l+1) \downarrow v_1 - (n-k-l-2) \downarrow v_1 + (n-k-l-2) \downarrow v_1 = 0.$$

 \circ Subcase 2: We have $m_i'm_i'(\downarrow v_1 \otimes \downarrow w^{\otimes k} \otimes \downarrow v_1 \otimes \downarrow w^{\otimes l} \otimes \downarrow v_2 \otimes \downarrow w^{\otimes n-k-l-3})$:

By the nature of m'_n , it is advantageous to consider whether or not n-k-l-3=0: If n-k-l-3=0:

(i) m'_i must take the first two $\downarrow v_1$'s. We have:

$$m_i'\Big(\Big[m_j'(\mathop{\downarrow} v_1\otimes \mathop{\downarrow} w^{\otimes k}\otimes \mathop{\downarrow} v_1\times \mathop{\downarrow} w^{\otimes j-k-2})\otimes \mathop{\downarrow} w^{\otimes l-(j-k-2)}\Big]\otimes \mathop{\downarrow} v_2\Big)=\mathop{\downarrow} v_1$$

Now $k+2 \le j \le l+k+2$, so there are (l+k+2)-(k+2)+1=l+1 such terms.

(ii) m'_i must take only the second $\downarrow v_1$. We have:

$$(-1)^{|v_1|+k|w|-(k+1)}m_i'\Big(\downarrow v_1\otimes w^{\otimes k}\otimes \Big[m_j'(\downarrow v_1\otimes \downarrow w^{\otimes (j-1)})\otimes w^{\otimes l-(j-1)}\Big]\otimes \downarrow v_2\Big)=-\downarrow v_1$$

Now $1 \le j \le l+1$, so there are (l+1)-1+1=l+1 such terms.

(iii) m'_i must take the second $\downarrow v_1$ and $\downarrow v_2$. The only nontrivial way to do this is:

$$(-1)^{|v_1|+k|w|-(k+1)}m'_{n-l-1}\Big(\downarrow v_1\otimes w^{\otimes k}\otimes \Big[m'_{l+2}(\downarrow v_1\otimes \downarrow w^{\otimes l}\otimes \downarrow v_2)\Big]\Big)=-\downarrow v_1$$

(iv) m'_j must take only $\downarrow v_2$. We have:

$$(-1)^{2|v_1|+(k+l)|w|-(k+l+2)}m_n'\Big(\downarrow v_1\otimes w^{\otimes k}\otimes \downarrow v_1\otimes \downarrow w^{\otimes l}\otimes \Big[m_1'(\downarrow v_2)\Big]\Big)=\downarrow v_1$$

$$\Rightarrow \sum_{i+j=n+1} m_i' m_j' (\downarrow v_1 \otimes \downarrow w^{\otimes k} \otimes \downarrow v_1 \otimes \downarrow w^{\otimes l} \otimes \downarrow v_2) = (l+1) \downarrow v_1 - (l+1) \downarrow v_1 - \downarrow v_1 + \downarrow v_1 = 0.$$

If $n - k - l - 3 \neq 0$:

- (i) and (ii) are trivial.
- (iii) m'_j must take the second $\downarrow v_1$ and $\downarrow v_2$. The only nontrivial way to do this is:

$$(-1)^{|v_1|+k|w|-(k+1)}m'_{n-l-1}\Big(\downarrow v_1\otimes w^{\otimes k}\otimes \Big[m'_{l+2}(\downarrow v_1\otimes\downarrow w^{\otimes l}\otimes\downarrow v_2)\Big]\otimes\downarrow w^{\otimes n-k-l-3}\Big)=-\downarrow v_1$$

(iv) m'_i must take only $\downarrow v_2$. We have:

$$(-1)^{2|v_1|+(k+l)|w|-(k+l+2)}m_n'\Big(\downarrow v_1\otimes w^{\otimes k}\otimes\downarrow v_1\otimes\downarrow w^{\otimes l}\otimes\Big[m_1'(\downarrow v_2)\Big]\otimes\downarrow w^{\otimes n-k-l-3}\Big)=\downarrow v_1$$

$$\Rightarrow \sum_{i+j=n+1} m_i' m_j' (\downarrow v_1 \otimes \downarrow w^{\otimes k} \otimes \downarrow v_1 \otimes \downarrow w^{\otimes l} \otimes \downarrow v_2 \otimes \downarrow w^{\otimes n-k-l-3}) = -\downarrow v_1 + \downarrow v_1 = 0.$$

- \circ Subcase 3: We have $m_i'm_i'(\downarrow v_1 \otimes \downarrow w^{\otimes k} \otimes \downarrow v_2 \otimes \downarrow w^{\otimes l} \otimes \downarrow v_1 \otimes \downarrow w^{\otimes n-k-l-3})$:
- (i) m'_i must take the first $\downarrow v_1$ and $\downarrow v_2$. The only nontrivial way to do this is:

$$m'_{n-k-1}\Big(\Big[m'_{k+2}(\downarrow v_1\otimes \downarrow w^{\otimes k}\otimes \downarrow v_2)\Big]\otimes \downarrow w^{\otimes l}\otimes \downarrow v_1\otimes \downarrow w^{\otimes n-k-l-3}\Big)=\downarrow v_1$$

(ii) m'_i must take $\downarrow v_2$ only. The only nontrivial way to do this is:

$$(-1)^{|v_1|+k|w|-(k+1)}m_n'\Big(\downarrow v_1\otimes w^{\otimes k}\otimes \Big[m_1'(\downarrow v_2)\Big]\otimes \downarrow w^{\otimes l}\otimes \downarrow v_1\otimes \downarrow w^{\otimes n-k-l-3}\Big)=-\downarrow v_1$$

Now (iii) and (iv) are trivial.

$$\Rightarrow \sum_{i+j=n+1} m_i' m_j' (\downarrow v_1 \otimes \downarrow w^{\otimes k} \otimes \downarrow v_2 \otimes \downarrow w^{\otimes l} \otimes \downarrow v_1 \otimes \downarrow w^{\otimes n-k-l-3}) = \downarrow v_1 - \downarrow v_1 = 0.$$

 $\circ \ Subcase \ 4 \colon \text{We have} \ m_i'm_j'(\mathop{\downarrow} v_1 \otimes \mathop{\downarrow} w^{\otimes k} \otimes \mathop{\downarrow} v_2 \otimes \mathop{\downarrow} w^{\otimes l} \otimes \mathop{\downarrow} v_2 \otimes \mathop{\downarrow} w^{\otimes n-k-l-3}) \colon$

If $n-k-l-3 \neq 0$, then this is trivial. Assume n-k-l-3=0.

(i) m'_j must take the first $\downarrow v_1$ and first $\downarrow v_2$. The only nontrivial way to do this is:

$$m'_{n-k-1}\Big(\Big[m'_{k+2}(\downarrow v_1\otimes \downarrow w^{\otimes k}\otimes \downarrow v_2)\Big]\otimes \downarrow w^{\otimes l}\otimes \downarrow v_2\Big)=\downarrow v_1$$

(ii) m'_j must take second $\downarrow v_2$ only. The only nontrivial way to do this is:

$$(-1)^{|v_1|+k|w|-(k+1)}m'_n\Big(\downarrow v_1\otimes w^{\otimes k}\otimes \Big[m'_1(\downarrow v_2)\Big]\otimes \downarrow w^{\otimes l}\otimes \downarrow v_2\Big)=-\downarrow v_1$$

Now (iii) and (iv) are trivial.

$$\Rightarrow \sum_{i+j=n+1} m_i' m_j' (\downarrow v_1 \otimes \downarrow w^{\otimes k} \otimes \downarrow v_2 \otimes \downarrow w^{\otimes l} \otimes \downarrow v_2 \otimes \downarrow w^{\otimes n-k-l-3}) = \downarrow v_1 - \downarrow v_1 = 0.$$

Hence, our result holds for case 1.

• Case 2: $\downarrow v_1$ is produced by $m'_i(\downarrow v_1 \otimes \downarrow w^{\otimes (i-2)} \otimes \downarrow v_2)$.

We examine the 2 different possibilities for which m'_i can yield this arrangement:

(i)
$$m'_j$$
 produces the $\downarrow v_1$.
(ii) m'_j produces a $\downarrow w$ in $\downarrow w^{\otimes (i-2)}$.

A similar observation to case 1 can be made here regarding the original arrangement $\downarrow x_1 \otimes \cdots \otimes \downarrow x_n$ containing exactly 3 v's, once again with $x_1 = v_1$. In this case, $x_n = v_2$. This yields 2 subcases:

- $\circ \ Subcase \ 1 \colon \text{We have} \ m_i'm_j'(\downarrow v_1 \otimes \downarrow w^{\otimes k} \otimes \downarrow v_1 \otimes \downarrow w^{\otimes (n-k-3)} \otimes \downarrow v_2)$
- (i) m'_i must take both $\downarrow v_1$'s. We have:

$$m_i'\Big(\Big[m_j'(\downarrow v_1\otimes \downarrow w^{\otimes k}\otimes \downarrow v_1\otimes \downarrow w^{\otimes j-k-2})\Big]\otimes \downarrow w^{\otimes n-j-1}\otimes \downarrow v_2\Big)=\downarrow v_1$$

Now $k+2 \le j \le n-1$, so there are (n-1)-(k+2)+1=n-k-2 such terms.

(ii) m'_i must take the second $\downarrow v_1$ only. We have:

$$(-1)^{|v_1|+k|w|-(k+1)}m_i'\Big(\downarrow v_1\otimes w^{\otimes k}\otimes \Big[m_j'(\downarrow v_1\otimes \downarrow w^{\otimes j-1})\otimes \downarrow w^{\otimes n-k-j-2}\Big]\otimes \downarrow v_2\Big)=-\downarrow v_1$$

Now $1 \le j \le n-k-2$, so there are (n-k-2)-(1)+1=n-k-2 such terms.

This implies that

$$\sum_{i+j=n+1} m_i' m_j' (\downarrow v_1 \otimes \downarrow w^{\otimes k} \otimes \downarrow v_1 \otimes \downarrow w^{\otimes (n-k-3)} \otimes \downarrow v_2) = (n-k-2) \downarrow v_1 - (n-k-2) \downarrow v_1 = 0.$$

- $\circ \ Subcase \ \mathcal{Z} \colon \text{We have} \ m_i'm_i'(\downarrow v_1 \otimes \downarrow w^{\otimes k} \otimes \downarrow v_2 \otimes \downarrow w^{\otimes (n-k-3)} \otimes \downarrow v_2)$
- (i) m'_i must take $\downarrow v_1$ and the first $\downarrow v_2$. The only nontrivial way to do this is:

$$m'_{n-k-1}\Big(\Big[m'_{k+2}(\downarrow v_1\otimes \downarrow w^{\otimes k}\otimes \downarrow v_2)\Big]\otimes \downarrow w^{\otimes n-k-3}\otimes \downarrow v_2\Big)=\downarrow v_1$$

(ii) m'_j must take second $\downarrow v_2$ only. The only nontrivial way to do this is:

$$(-1)^{|v_1|+k|w|-(k+1)}m_n'\Big(\downarrow v_1\otimes w^{\otimes k}\otimes \Big[m_1'(\downarrow v_2)\Big]\otimes \downarrow w^{\otimes n-k-3}\otimes \downarrow v_2\Big)=-\downarrow v_1$$

Now (iii) and (iv) are trivial.

$$\Rightarrow \sum_{i+j=n+1} m_i' m_j' (\downarrow v_1 \otimes \downarrow w^{\otimes k} \otimes \downarrow v_2 \otimes \downarrow w^{\otimes (n-k-3)} \otimes \downarrow v_2) = \downarrow v_1 - \downarrow v_1 = 0.$$

Hence, our result holds for case 2.

So
$$\sum_{i+j=n+1} m_i' m_j' (\downarrow x_1 \otimes \cdots \downarrow \otimes x_n) = 0, \ \forall \ x_1 \cdots x_n \in V.$$

Thus
$$D^2(\downarrow x_1 \otimes \cdots \downarrow \otimes x_n) = 0$$

By induction, $D^2 = 0$ on any number of inputs.

Hence the preceding maps m_n on the graded vector space V form an A_{∞} algebra.

3. Induced L_{∞} Algebra

The A_{∞} algebra structure on $V = V_0 \oplus V_1$ that was constructed in this note may be skew symmetrized to yield an L_{∞} algebra structure on V; see [5] for details. This L_{∞} algebra will thus join the collection of previously defined such structures on V. The relationship among these algebras will be a topic for future research.

References

- [1] M. Daily, Examples of L_m and L_{∞} structures, unpublished.
- [2] M. Daily and T. Lada, A finite dimensional L-infinity algebra example in gauge theory, Homology, Homotopy and Applications, vol.7(2), 87-93 (2004).
- [3] T. Kadeishvili and T. Lada, A small open-closed homotopy algebra (OCHA), Georgian Mathematical Journal, to appear.
- [4] H. Kajiura and J. Stasheff, Homotopy algebras inspired by classical open-closed string field theory, Comm. Math Phys. 263, no. 3 (2006), 553-581.
- [5] T. Lada and M. Markl, Strongly homotopy Lie algebras, Communications in Algebra 23(6), (1995), 2147-2161
- [6] J. Stasheff, Associativity of H-Spaces II, Trans. Am. Math. Soc. 108 (1963), 293-312.

DEPARTMENT OF MATHEMATICS, NORTH CAROLINA STATE UNIVERSITY, RALEIGH NC 27695, USA *E-mail address*: mpallocc@math.ncsu.edu

DEPARTMENT OF MATHEMATICS, NORTH CAROLINA STATE UNIVERSITY, RALEIGH NC 27695, USA E-mail address: lada@math.ncsu.edu