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ABSTRACT. We construct an example of an A., algebra structure defined over a finite
dimensional graded vector space.

INTRODUCTION

Ay algebras (or sha algebras) and L., (or sh Lie algebras) have been topics of current
research. Construction of small examples of these algebras can play a role in gaining insight
into deeper properties of these structures. These examples may prove useful in developing a
deformation theory as well as a representation theory for these algebras.

In [2], an L., algebra structure on the graded vector space V = Vy & V; where 1} is a 2
dimensional vector space, and V; is a 1 dimensional space, is discussed. This surprisingly
rich structure on this small graded vector space was shown by Kadeishvili and Lada, [3], to
be an example of an open-closed homotopy algebra (OCHA) defined by Kajiura and Stasheff
[4]. In an unpublished note [1] M. Daily constructs a variety of other L., algebra structures
on this same vector space.

In this article we add to this collection of structures on the vector space V' by providing

a detailed construction of non-trivial A, algebra data for V.

1. Ao ALGEBRAS
We first recall the definition of an A, algebra (Stasheff [6]).

Definition 1.1. Let V' be a graded vector space. An Ay, structure on V is a collection of
linear maps my, : V¥ — V of degree 2 — k that satisfy the identity

Oémn,k+1(l'1 (SRR T ®mk(x,\+1 & ®$)\+k) ®$)\+k+1 & ®$n) =0

where o = (—1)FHAtRARntk(elt+laal) - for qlln > 1.

This utilizes the cochain complex convention. One may alternatively utilize the chain

complex convention by requiring each map my to have degree k — 2.
1
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We will define the desuspension of V (denoted | V') as the graded vector space with
indices given by (| V),, = V,,11, and the desuspension operator, |: V — |V (resp. suspension
operator 1:| V' — V) in the natural sense.

Stasheff also showed that an A, structure on V is equivalent to the existence of a degree
1 coderivation D : T* |V — T* | V with the property D? = 0. Here, T* | V is the tensor
coalgebra on the graded vector space | V.
Such a coderivation is constructed by defining
> / / ®k . . . / M ®k
D = ka, where my, :| V" — |V is given by first defining m), := (—1)" 2 |omyo |
k=1
and then extending each mj, to a coderivation on 7% | V.

2. A FINITE DIMENSIONAL EXAMPLE

Let V' denote the graded vector space given by V = @ V,, where V; has basis < vy, vy >,
Vi has basis < w >, and V,, = 0 for n # 0, 1. Define a structure on V' by the following linear
maps my, : V" — V:

= Sn+101
®(n—-1)y _
mn(vl X w = Sp+1W
(n1)(n-+2) on .
where s, = (—=1)" 2, and m,, = 0 when evaluated on any element of V" that is not

listed above.

Theorem 2.1. The maps defined above give the graded vector space V an A algebra struc-
ture.

It is worth noting that this assumes the cochain convention regarding A, algebra struc-
tures. The proof of this theorem relies on two lemmas:

n(n—1)

Lemma 2.2. Let m!, :| V" —| V = (-1) | om,o 1%" where | V denotes the
desuspension of V. Under the preceding definitions for m,, and V', we have the following
definitions for m),:
m/1 =lm
Forn>2: m (|l |[w®*® | w2k =y, 0<k<n-—2
m,(ln® [ w" 2@ Lv) =|v
my, (L@ Lw®" D) =l w
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Remark 2.3. Each m), is of degree 1.
Lemma 2.4. Let D = Zm;f where my, is defined above. Let n > 2 be a positive integer.

k=1
Suppose D*(| 11®@ |10 @+ ® |2p) =0V 2, €V, 1<m<n-—1.

Then D* (0@ l22 @+ @ Lwy) = Y mimj(lm@ |22 @ -+ @ | 2,)
i+j=n-+1

Proof of Lemma 2.2. m/j(x) = (=1)° om0 T (| x) =] my(x) for any z.

Now let n > 2. The majority of the work here is centered around computing the signs
associated with the graded setting. The elements x; and the maps T, |, and m,, all contribute
to an overall sign via their degrees. Observing these signs, we find

M (131® |22 @ @ L2,) = (=1)" 7 Lompo 12" (|11® |22 @ -+ ® | )

_ (_1)2?/f w2i-1l | my (0 @29 ® - @m,) if nis even.
(=)= el (2 @ 22 @ -+ @ ) if 1 s odd.

First consider m/, (| 11® | w®*® |v,® |w®™27F) 0 <k <n—2:

Case 1: n is even, k is even. Then

m! (Lv1® [w*@ [v@ | w227k = (—1)lHGEDll |y ) @ w®F @ vy @ WD F)
= (=) (=1)ks, Loy
= (-DEFN-D)TEE |y
)

= (1D E Loy (x)

If 2 is even, then (x) = (—1)°d(—1)0dd"dd |4 =],
If 2 is odd, then (x) = (—1)even(—1)edd™even | =],

Case 2: n is even, k is odd. Then
my(lo1®@ lw® Lo@ w27 = (1) HE i (0 @ 0 @ v © w2
(=) 272 (=1)"s, Loy
= —(~DI-DTTE
= —(=1)2(=1)"VEFD Lo (xx)
If 2 is even, then (xx) = —(—1)even(—1)0ddredd | 4y —| .
If 2 is odd, then (sx) = —(—1)dd(—1)edd even | 4 —| 4,
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Case 3: n is odd, k is even. Then

m;(lvl(@ lw®k® lvl® lw@(nf2)fk) — (_1)|”1|+(%*1)‘w‘ lmn(U1 ® w®k Qv & w®(nf2)fk)
= (=)™ (= 1)ks, Loy
n—1 (n+1)(n+2)

= (D)= Ly
= —(-1)T (=D (k)

If 221 is even, then (* * %) = —(—1)°ver(—1)odd%edd |4 —| 4.
If "T is odd, then (x * *) = —(—1)°dd(—1)eventedd |4 —| .

Case 4: n is odd, k is odd. Then

m! (ln® |w™® |v,@ w27k = (1) | m (0 @ w @ vy @ WD)
= (1) (=1)s, L vy
TEDTE L

= 0t (n42) Log (k% %%)

If =1 is even, then (% % %) = —(—1)°ver(—1)eddedd |4 — |4
If 2= 2 is odd, then (x % *%) = —(—1)°dd(—1)evenodd | 4 —| ¢,

Hence m/ (| v,® | w®*® |v,®@ |w®™27F) =|v, 0<k<n—2
Now consider m/ (| v1® | w®™ 2@ |v,):

Case 1: n is even. Then

1)lor+ (5 =Dlwl 2l ® Lw® g Lvg)

my (L@ w2 Lvy) = (-1)
=(-1)=""
= (-1)
= (-1)

M\:

Sn+1 Lo

(n+2)(n+3)
-1 Lo

1( )%—1)(n+3) lvl (*)

M\:

1
1

M\:

If 2 is even, then (x) = (—1)°dd(—1)odd%dd | 4 = |y,
If 2 is odd, then (x) = (=1)®ver(=1)ever™odd [ =|vy.
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Case 2: nis odd. Then

my, (lv1® w2 L) = (-1 (3w mn(lU1® w0 2g Lvg)

,_-

(—1)
(— 1)n2 Spt1 Lur
DT D L

= (—1)"F (1) |y ()
If ”—_1 is even, then (#x) = (—1)°ven(—1)cdd%even | 4 —| ;.
If =1 is odd, then (sx) = (—1)°dd(—1)0dd™dd | 4y —| ;.

Hence m},(|vi® | w®" 2@ |vy) =] v

The preceding arguments for cases 1 and 2 for m/ (| v;® | w®™ 2® | vy) may be repeated
for m! (|l vi® | w®™=1),

Thus m!, (| v;®@ |w®™ D) =] w O

Proof of Lemma 2.4. We first note that
D(lo®@ @@ lz,) = Y mimj(le® o, ® - |z,)
i+j<n+1

since m(l21® 2o ® -+ - ® |x;) =0 for k> [. So

DY(ler® |22 ® @ lay) = Y mimi(le1® lea ® - ® | 2a)
i+j<n
4 Z m;mg(lx1®lx2®'-'®l$n)

i+j=n-+1

Hence it suffices to show that Z mm(lo® |1, ® - ® lz,) =0
i+j<n
Consider Z m;m;(lm@ lze® - ® | x,): Since i + j < n, we can break this sum up
i+j<n

into 4 different types of of elements in | V®* based on whether the first and last terms in
the tensor product contain m; or m’:
e Type 1: Elements with first term | z; and last term | x,

(example: | x1® | xo @ mi(|z3) @ mb(| 24® | x5)® | x6)
e Type 2: Elements with first term | z; and last term containing mj, for some k

(example: | 21® | o @ mi(| z3 @ mby(l 24® | x5)® | 26))
e Type 3: Elements with first term containing mj, for some k£ and last term | z,,
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(example: my(l21® [ x9) @ mi(l23)® | 24® | 25® | x6)
e Type 4: Elements with first term containing mj, and last term containing m; for some k,[
(example: my(l 1@ | 22)®@ | 230 |24 @ my(lzs® | 26))

Now each term of type 1 must be produced by m;m} with i + j < n — 1. Hence, by
factorization of tensor products, all possible terms of type 1 are given by:

(—1)2\x1\—2< ixl ® ( Z m;m;(l@@ le R ® lwn_1)>>® lxn
i+j<n—1

= ( lr ® (D2(lx2® lr3® - ® lxnfl))>® lon

= (lz1®0) @ |z,

=0

since D? = (0 when evaluated on n — 2 terms.

Now since all terms of type 1 form a collection of elements in | V®* that sum up to 0, we
can duplicate this collection multiple times. This is significant when we consider all terms

of type 2 in conjunction with a set of type 1 terms. Combining all type 2 terms with a set
of type 1 terms and factoring tensor products, we get:

(_1>2\x1\*2 lxl ® ( Z m;mg(lx2® ll’s R ® lxn)>

i+j<n
=21 ® (D*(l22® |23 ® - ® |ay))
=z ®0
=0

since D? = 0 when evaluated on n — 1 terms.

Hence, all type 2 added together equal 0. All type 3 terms added together equal 0 following
a similar argument .

We now consider type 4 terms. Consider an arbitrary element of type 4:
mi(lz1 @@ 1)@ |21 @ @ L2 @Ml 2nj1 @@ | ay)
Consider how this arbitrary element is generated: We begin with
mm(lo ®---® | x,)
We then apply m/ to the last j terms, which yields:

(_1)‘ml|++‘xn*]‘7(n7])m;<lx1 ® e ® \anij ® m;(lxn7j+l ® e ® lxn>)
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Finally we apply m; to the first ¢ terms:
(=)t =Dy (|01 @ @ | 2)® | T @ - ® | Ty @M (| e j1 @ @ L 2,) (%)
Each of these arbitrary type 4 elements can be paired up with an element generated by
mim; as follows: Begin with
il ® - ® L)

Then apply m! to the first 7 terms:
mi(mi(la1® @ 12)® |2 @ ® | 3,)
Finally, apply m/ to the last j terms:

(_1)‘331‘+"'+‘xn7j‘7(n7j)+1m;(lx1®. . ® lxl)(g) lxi+1® ...... ® \anfj®m;<lxn7j+l® . ® lxn) (**)

Since these type 4 elements were arbitrary, and (%) + (xx) = 0, all type 4 terms added
together equal 0. Hence, all type 1, 2, 3, and 4 terms yield 0, and so

> mim(lae® Loy © - @ La,) =0

i+j<n

Proof of Theorem 2.1. 1t is clear that each map m,, is of degree 2 — n. To prove that these
maps yield an A, structure, one may verify that they satisfy the identity given in definition
1.1. However, this is a rather daunting task, due to the varying signs, s,, accompanying the
m, maps. To utilize an alternative method of proof, we construct a degree 1 coderivation,

D, as described in section 1.

In the context of Theorem 2.1, we may use the definition for m} given by Lemma 2.2 to
construct D. It then suffices to show that D* = 0.

We aim to prove D? = 0 by induction on the number of inputs for D. It is worth first
noting that D = Zm;, however D(| 1 ® ---® | x,) = Zm;(l T ®--® | x,) since
k=1

k=1
mi(lzy @ -+ | ®x,) =0 for k > n.

For n =1, we have D*(|z) = m/m}(lz) =lmi(z) =0V 2 €V.
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For n = 2, we have

D*(Lay, Lag) = mim) (l21® | o) +mimb(l21® | a2)
+ moymi (1 21® | x2) + momby(l 21® | 29)
= m(m) (L21)® Ly — (=1)"zy @ m](22)) + mimb(l 210 |2
+my(my (Le)® L2z — (1)1 ley @ mi(22)) +0
= [mimi(l21)® Lag + (1) m) (Lay) @ mi (L zy)]
— (=) (1) @ mi (w2) — (1) ey @ mim (22)] + mimi(La1® | xy)
+miy(m) (La1)® L xa) — (= 1)l (21 @ m (z2))
= mimh(L21® | 22) + my(m) (L 21)® Lw2) — (1) Imb (21 @ mi (2))
=0Vax, 290 €V

Now assume D*(|z1 ® -+ | ®x,_1) = 0. We aim to show that D*(|z; ® - -+ | ®z,) = 0:
By Lemma 2.4, D*(| 21 ® - -+ | ®z,) = Z m;m(lxy ® - | ®x,), hence it suffices to
i+j=n+1
show that Z mmi(le ®--- |®x,) =0, Vay---m, € V.
itj=nt1

It is advantageous to approach this problem from the bottom up, since z;---z, € V
implies calculating 3" different combinations of elements. That is, we consider only nontrivial

(nonzero) elements in the sum Z mym(lay ® -+ | ®x,). Now since i 4+ j = n + 1, we
i+j=n+1

observe that mjm/(l 21 ® --- | ®z,) € | V®. Since, by definition, mj cannot produce the

element | vy, the seemingly large task of considering nontrivial mim/(| 71 ®--- | ®,) yields

only two possibilities:

mim(l o @ | ®z,) =c | v
or mim(lzy ®- - |®x,) = c |w for some constant, c.

Remark 2.5. Since production of a | vy or | w relies on the number of v’s and w’s in the
arrangement | xr; ® --- | ®x,, these possibilities are disjoint.

Therefore if mjm/(l x1 ® -+ | ®x,) # 0 for some i + j = n + 1, then Z mym’(|

i+j=n-+1
r1 ® -+ | ®z,) contains a collection of | v;’s or | w’s.

We first consider the manner in which mm/(|x; ® -+ | ®x,) yields a | w:

By defintion of m/, | w must be produced by m/(] v1® | w®(=V) (¥). Now since a
nonzero m; will contribute either the |v; or a | w to the arrangement | v;® Jw®@=1 | the
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original arrangment | x; ® -+ | ®2, must contain exactly one more ‘v’ (v = v; or vy), for

a total of two v’s. It is also worth nothing that 1 = vy, otherwise m;mg(lx1®~ - l®x,) =0.

e Case 1: v = v;. Then we have mim/(lvi® |w?*® |n® Jw®=2=F) 0 <k <n-—2.

Now, to produce (*), m; must ‘catch’ (1) both |v1’s, or (2) only the second | v;.

(1) We have m/(| v,® Lw®k@ [v@ [wP=2=F) =, k+2<j <n.
This yields m/ (] v;® | w®® ) =] w. Now since k +2 < j < n, there are n — (k+2) +1 =
n — k — 1 such terms in Z m;m (L ® @ |v@ | w2k,

i+j=n+1

(2) We have(—1)'”1‘+k|w|_(k+1)m;< ln® | w®e [m}(lM@ lw®(j_1))}® lw®("_2)_k_(j_l)> =

— lw, 1 <j <n—k—1. Similarly, there are (n —k —1) — 141 =n—k — 1 such terms in

Z m;;m;'<lvl® lw®*® |n® lW®(n_2)_k)-
i+j=n+1

= Z mimi(|v®@ |w*e |0 ® w2 Ky = (p—k—1) lw—(n—k—1) lw=0.
i+j=n+1

e Case 2: v = vy. Then we have mim/(lv;® L@ | v,@ [ w2k 0 <k <n-—2.
Similarly, to produce (*), m} must ‘catch’ (1) both |v; and |vy, or (2) only |vs.

For (1), the only nontrivial way to do this yields:

My, g1 (Mo (L 1® Lw®*® | vy)® lw®(”_2)_k) =|lw

and for (2), the only nontrivial way to do this yields:

(_1)\v1|+k|w\f(k+1)m;(lUl@ lw®k ® mll(lUQ)(g) lw@(an)fk) _ l«w

= 3 mmi(ln® v lne |0 D) =|u— |w=0.
i+j=n-+1

In either case, if mim/(lz; ® --- | ®z,) produces |w’s, then

Z mym(lo ® - | ®@x,) = 0.

i+j=n-+1

We now consider the manner in which m;m(l 7, ® --- | ®x,) yields a | v;:
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By defintion of m/,, | v; must be produced by either m/(| v,® |w®*® |v; ® w®(i_2)_k) or
mi(ln® |wP=2® |v,).

e Case 1: |v; is produced by m/(]v,® | w®*® |v,®@ |w®(=2~F),

We examine the 4 different possibilities for which m/; can yield this arrangement:

(¢) m/; produces the first | vy. (i7) m/ produces a |w in |w®".

(49i) m’; produces the second |v;. (iv) m) produces a |w in | w®E=2)=k,

A key observation to make here is that (i), (i7), (iéi), and (4v) imply that the original
arrangement | r; ® ---® | x, must contain exactly 3 v’s, once again with z; = v;. This

yields 4 subcases:
Subcase 1: We have mim/;(|v1® | w®*® | 1@ |w¥® | n,@ |w®F3):

(i) m/; must take the first two |v,’s. We have:

mi([mi(l0® L@ Lox [w® ™o |00 Lo w7 <o

Now k+2 <j<Il+k+2, sothereare (I +k+2)—(k+2)+1=1+1 such terms.

(43) m} must take only the second |v;. We have:

(=R (o u® e | (Lo LU )ew 00 @ lue w0 =~ |y

Now 1 < j <[l+1, so there are (I4+1) — 141 =1+ 1 such terms.

(4ii) m’; must take the second and third |v;’s. We have:

(—1)‘”1|+k|“’|_(k+1)m;< v @uw® e [m;‘(lm@ lw®® |n® lw®j_l_2)] ® lw®”_k_j+1> =—|u

Now [+2<j<n—k—1,sothereare (n —k—1)— (I+2)+1=n—Fk—1[1—2 such terms.

(iv) m} must take only the third |v;. We have:

(_1)2|v1\+(k+l)|w|—(k+l+2)m;( L1 @@ | 1,® lw®l®[m}(lv1® lw®(j‘1))® lw@n—k—l—j—Q]) —luv

Now1<j<n—k—1—2,s0thereare (n—k—1—2)—1+4+1=n—k—1—2 such terms.
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= > mmi(lu® v ne v v [w ) = (14 1) o — (1+1) |
i+j=n+1
vl—(;—;cr—l—Q)lvl—i—(n—k—l—Q)lvl:O

o Subcase 2: We have m;m;-(Lm@ Lw®*Q | 1Q | wPQ | 1@ lw@n—k—l—:a):

By the nature of m/,, it is advantageous to consider whether or not n —k — 1 — 3 = 0:
Ifn—k—-1-3=0:
(i) m’; must take the first two |v,’s. We have:
mi([m)(l0® Lo Lux [w® ™)@ 10752 |un) =Lu
Now k+2 < j<Il+k+2,sothere are (I +k+2) — (k+2)+ 1 =1+ 1 such terms.

,.
J

(_1)|v1\+k|w|f(k+1)m;< Loy @ w* @ [m}(l?}l@ L) g w®lf(j71):|® lU2> — o

Now 1 < j <Il+1, so there are ({+1) — 1+ 1 =1+ 1 such terms.

(74) m/; must take only the second |v;. We have:

(49i) m} must take the second | v, and | vy. The only nontrivial way to do this is:
(_1)\v1|+k\w\*(k+1)m%7171< Loy ® w®* @ [m§+2(lv1® L' lvz)D —
(iv) m/; must take only |v;. We have:

(_1)2\1}1|+(k+l)|w|—(k:+l+2)m;1( Lo @ w® |1® [w® @ [m/1<l02)]> —luv

= Z mm’ (L ® L@ | v1® [w® Lvy) = (I4+1) Loy—(+1) Jvy— v+ v = 0.
itj=n+1

Ifn—k—1-3#0:

(7) and (éi) are trivial.

(4ii) m’; must take the second | v, and |[v,. The only nontrivial way to do this is:
(_1)\v1|+k|w|*(k+1)m;%lil( Loy @ w®* @ [m2+2(lv1® L' lv2)}® lw@nfkflfii) — o
(iv) m/; must take only |v,. We have:

(_1>2|v1\+(k+l)|w|*(k+l+2)m;( Loy @ e 0@ |w® @ [mﬁ(lvz)]@) lw@nfkflf?)) —luv

= > mimi(ln® |w@ |ne |w”® Lv® w1 = — o+ v =0,
i+j=n+1
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o Subcase 3: We have m;m;(lm@ LwPkQ | 1,® |w®® | vy® |wE—F—1-3);

(i) m} must take the first |v; and |vp. The only nontrivial way to do this is:
m%—k—l([m;ﬂ&(lvl(@ lw®® lw)} ® v |vn® lw®”_k_l_3> =|u
(44) m/; must take | v, only. The only nontrivial way to do this is:
(—1)‘”1|+’“|w|’(k+1)m'n< v @ w® ® |:m/1(l’02):| R lw® |n® lw®"*k*l*3) =— |

Now (ii7) and (iv) are trivial.

= Y mimi(ln® |we lne |w¥e v |w M) =le— v = 0.
i+j=n+1

o Subcase 4: We have mim/(| v1® |w®® |1,® |w¥® |v,®@ | w®"+173):
If n —k—1—3%#0, then this is trivial. Assumen —k—1—3=0.

(i) m/; must take the first | v; and first |v,. The only nontrivial way to do this is:
m%%q([mhg(lm@ e lvz)] ® lw?® lU2> =|v
(4i) m’ must take second | vy only. The only nontrivial way to do this is:
(‘U‘Ull%lw‘_(kﬂ)m;( Lo @ w* @ [mﬁ(lvz)] ® | lvz) =—lu
Now (ii7) and (iv) are trivial.
= Z mim(ln® |w**® | 1@ | w*'® | v,® w7 = v — [v = 0.
i+j=n+1

Hence, our result holds for case 1.
e Case 2: |v; is produced by m/(|v;® | w®2® |v,).

We examine the 2 different possibilities for which m/; can yield this arrangement:

() m; produces the |v;.

(ii) m/; produces a |w in | w®0=2).
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A similar observation to case 1 can be made here regarding the original arrangement
lz1 ®---® | &, containing exactly 3 v’s, once again with x; = vy. In this case, x, = vs.
This yields 2 subcases:

o Subcase 1: We have m;m/;(| v;® Lw® @ |v@ |weP = =3)g | v,)
(4) m); must take both | v,’s. We have:
m;([m;(lm@ L0P*® |0® lw®j_k_2)] ® wsi-lg m) _ oy

Now k£ +2 < j <n—1,so there are (n — 1) — (k+2) +1 =n — k — 2 such terms.

(44) m/, must take the second |v; only. We have:
(_1)|v1|+k|w|f(k+1)mg< lvl ® w®k ® m;<lv1® lw®j71)® lw@nfkfj*Q] ® va) - _ lvl

Now 1 <j<n-—k—2, sothereare (n —k—2)—(1)+1=n—k— 2 such terms.
This implies that

D itimnar MM (Lo1® L@ v ® Lw® =+ | vy) = (n—k—2) [v;—(n—k—2) [v; = 0.

o Subcase 2: We have mim/,(| v;® |w®*® |vo® [ w3 |v,)

(i) m} must take |v; and the first |v;. The only nontrivial way to do this is:
m;7k71<|:m;c+2<lvl® lw®*® l%)} ® w3 lvz) =lv
(43) m} must take second |v; only. The only nontrivial way to do this is:
(L (o © w @ [ (L)@ 1w Le) = — Luy
Now (7i7) and (iv) are trivial.
= Y mm(lo® e Lue [T+ [u) =|v- v = 0.
it+j=nt1
Hence, our result holds for case 2.
So Z mmi(le ®--- |®x,) =0, Vay---m, € V.
t+j=n+1

Thus D*(|21 ® -+ | Qx,) =0

By induction, D? = 0 on any number of inputs.
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Hence the preceding maps m,, on the graded vector space V' form an A, algebra. 0

3. INDUCED L., ALGEBRA

The A, algebra structure on V' = V3 @ V; that was constructed in this note may be skew
symmetrized to yield an L, algebra structure on V; see [5] for details. This L, algebra will
thus join the collection of previously defined such structures on V. The relationship among
these algebras will be a topic for future research.
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