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Abstract. We construct an example of an A∞ algebra structure defined over a finite
dimensional graded vector space.

Introduction

A∞ algebras (or sha algebras) and L∞ (or sh Lie algebras) have been topics of current

research. Construction of small examples of these algebras can play a role in gaining insight

into deeper properties of these structures. These examples may prove useful in developing a

deformation theory as well as a representation theory for these algebras.

In [2], an L∞ algebra structure on the graded vector space V = V0 ⊕ V1 where V0 is a 2

dimensional vector space, and V1 is a 1 dimensional space, is discussed. This surprisingly

rich structure on this small graded vector space was shown by Kadeishvili and Lada, [3], to

be an example of an open-closed homotopy algebra (OCHA) defined by Kajiura and Stasheff

[4]. In an unpublished note [1] M. Daily constructs a variety of other L∞ algebra structures

on this same vector space.

In this article we add to this collection of structures on the vector space V by providing

a detailed construction of non-trivial A∞ algebra data for V .

1. A∞ Algebras

We first recall the definition of an A∞ algebra (Stasheff [6]).

Definition 1.1. Let V be a graded vector space. An A∞ structure on V is a collection of

linear maps mk : V ⊗k → V of degree 2− k that satisfy the identity

n−1∑
λ=0

n−λ∑
k=1

αmn−k+1(x1 ⊗ · · · ⊗ xλ ⊗mk(xλ+1 ⊗ · · · ⊗ xλ+k)⊗ xλ+k+1 ⊗ · · · ⊗ xn) = 0

where α = (−1)k+λ+kλ+kn+k(|x1|+···+|xλ|), for all n ≥ 1.

This utilizes the cochain complex convention. One may alternatively utilize the chain

complex convention by requiring each map mk to have degree k − 2.
1
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We will define the desuspension of V (denoted ↓ V ) as the graded vector space with

indices given by (↓V )n = Vn+1, and the desuspension operator, ↓: V →↓V (resp. suspension

operator ↑:↓ V → V ) in the natural sense.

Stasheff also showed that an A∞ structure on V is equivalent to the existence of a degree

1 coderivation D : T ∗ ↓V → T ∗ ↓V with the property D2 = 0. Here, T ∗ ↓ V is the tensor

coalgebra on the graded vector space ↓ V .

Such a coderivation is constructed by defining

D :=
∞∑

k=1

m′
k, where m′

k :↓V ⊗k →↓V is given by first defining m′
k := (−1)

k(k−1)
2 ↓◦mk◦ ↑⊗k

and then extending each m′
k to a coderivation on T ∗ ↓ V .

2. A Finite Dimensional Example

Let V denote the graded vector space given by V =
⊕

Vn where V0 has basis < v1, v2 >,

V1 has basis < w >, and Vn = 0 for n 6= 0, 1. Define a structure on V by the following linear

maps mn : V ⊗n → V :

m1(v1) = m1(v2) = w

For n ≥ 2 : mn(v1 ⊗ w⊗k ⊗ v1 ⊗ w⊗(n−2)−k) = (−1)ksnv1, 0 ≤ k ≤ n− 2

mn(v1 ⊗ w⊗(n−2) ⊗ v2) = sn+1v1

mn(v1 ⊗ w⊗(n−1)) = sn+1w

where sn = (−1)
(n+1)(n+2)

2 , and mn = 0 when evaluated on any element of V ⊗n that is not

listed above.

Theorem 2.1. The maps defined above give the graded vector space V an A∞ algebra struc-

ture.

It is worth noting that this assumes the cochain convention regarding A∞ algebra struc-

tures. The proof of this theorem relies on two lemmas:

Lemma 2.2. Let m′
n :↓ V ⊗n →↓ V := (−1)

n(n−1)
2 ↓ ◦mn◦ ↑⊗n where ↓ V denotes the

desuspension of V . Under the preceding definitions for mn and V , we have the following

definitions for m′
n:

m′
1 =↓m1

For n ≥ 2 : m′
n(↓v1⊗ ↓w⊗k⊗ ↓v1⊗ ↓w⊗(n−2)−k) =↓v1, 0 ≤ k ≤ n− 2

m′
n(↓v1⊗ ↓w⊗(n−2)⊗ ↓v2) =↓v1

m′
n(↓v1⊗ ↓w⊗(n−1)) =↓w
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Remark 2.3. Each m′
n is of degree 1.

Lemma 2.4. Let D =
∞∑

k=1

m′
k where m′

k is defined above. Let n ≥ 2 be a positive integer.

Suppose D2(↓x1⊗ ↓x2 ⊗ · · ·⊗ ↓xm) = 0 ∀ xi ∈ V , 1 ≤ m ≤ n− 1.

Then D2(↓x1⊗ ↓x2 ⊗ · · ·⊗ ↓xn) =
∑

i+j=n+1

m′
im

′
j(↓x1⊗ ↓x2 ⊗ · · ·⊗ ↓xn)

Proof of Lemma 2.2. m′
1(x) = (−1)0 ↓◦m1◦ ↑ (↓x) =↓m1(x) for any x.

Now let n ≥ 2. The majority of the work here is centered around computing the signs

associated with the graded setting. The elements xi and the maps ↑, ↓, and mn all contribute

to an overall sign via their degrees. Observing these signs, we find

m′
n(↓x1⊗ ↓x2 ⊗ · · ·⊗ ↓xn) = (−1)

n(n−1)
2 ↓◦mn◦ ↑⊗n (↓x1⊗ ↓x2 ⊗ · · ·⊗ ↓xn)

=

{
(−1)

Pn/2
i=1 |x2i−1| ↓mn(x1 ⊗ x2 ⊗ · · · ⊗ xn) if n is even.

(−1)
P(n−1)/2

i=1 |x2i| ↓mn(x1 ⊗ x2 ⊗ · · · ⊗ xn) if n is odd.

First consider m′
n(↓v1⊗ ↓w⊗k⊗ ↓v1⊗ ↓w⊗(n−2)−k), 0 ≤ k ≤ n− 2:

Case 1: n is even, k is even. Then

m′
n(↓v1⊗ ↓w⊗k⊗ ↓v1⊗ ↓w⊗(n−2)−k) = (−1)|v1|+(n

2
−1)|w| ↓mn(v1 ⊗ w⊗k ⊗ v1 ⊗ w⊗(n−2)−k)

= (−1)0+n
2
−1(−1)ksn ↓v1

= (−1)
n
2
−1(−1)

(n+1)(n+2)
2 ↓v1

= (−1)
n
2
−1(−1)(n+1)(n

2
+1) ↓v1 (∗)

If n
2

is even, then (∗) = (−1)odd(−1)odd*odd ↓v1 =↓v1.

If n
2

is odd, then (∗) = (−1)even(−1)odd*even ↓v1 =↓v1.

Case 2: n is even, k is odd. Then

m′
n(↓v1⊗ ↓w⊗k⊗ ↓v1⊗ ↓w⊗(n−2)−k) = (−1)2|v1|+(n

2
−2)|w| ↓mn(v1 ⊗ w⊗k ⊗ v1 ⊗ w⊗(n−2)−k)

= (−1)0+n
2
−2(−1)ksn ↓v1

= −(−1)
n
2 (−1)

(n+1)(n+2)
2 ↓v1

= −(−1)
n
2 (−1)(n+1)(n

2
+1) ↓v1 (∗∗)

If n
2

is even, then (∗∗) = −(−1)even(−1)odd*odd ↓v1 =↓v1.

If n
2

is odd, then (∗∗) = −(−1)odd(−1)odd*even ↓v1 =↓v1.



4 MICHAEL P. ALLOCCA AND TOM LADA

Case 3: n is odd, k is even. Then

m′
n(↓v1⊗ ↓w⊗k⊗ ↓v1⊗ ↓w⊗(n−2)−k) = (−1)|v1|+(n−1

2
−1)|w| ↓mn(v1 ⊗ w⊗k ⊗ v1 ⊗ w⊗(n−2)−k)

= (−1)0+n−1
2

−1(−1)ksn ↓v1

= (−1)
n−1

2
−1(−1)

(n+1)(n+2)
2 ↓v1

= −(−1)
n−1

2 (−1)
(n+1)

2
(n+2) ↓v1 (∗ ∗ ∗)

If n−1
2

is even, then (∗ ∗ ∗) = −(−1)even(−1)odd*odd ↓v1 =↓v1.

If n−1
2

is odd, then (∗ ∗ ∗) = −(−1)odd(−1)even*odd ↓v1 =↓v1.

Case 4: n is odd, k is odd. Then

m′
n(↓v1⊗ ↓w⊗k⊗ ↓v1⊗ ↓w⊗(n−2)−k) = (−1)(n−1

2
)|w| ↓mn(v1 ⊗ w⊗k ⊗ v1 ⊗ w⊗(n−2)−k)

= (−1)
n−1

2 (−1)ksn ↓v1

= −(−1)
n−1

2 (−1)
(n+1)(n+2)

2 ↓v1

= −(−1)
n−1

2 (−1)
(n+1)

2
(n+2) ↓v1 (∗ ∗ ∗∗)

If n−1
2

is even, then (∗ ∗ ∗∗) = −(−1)even(−1)odd*odd ↓v1 =↓v1.

If n−1
2

is odd, then (∗ ∗ ∗∗) = −(−1)odd(−1)even*odd ↓v1 =↓v1.

Hence m′
n(↓v1⊗ ↓w⊗k⊗ ↓v1⊗ ↓w⊗(n−2)−k) =↓v1, 0 ≤ k ≤ n− 2

Now consider m′
n(↓v1⊗ ↓w⊗(n−2)⊗ ↓v2):

Case 1: n is even. Then

m′
n(↓v1⊗ ↓w⊗(n−2)⊗ ↓v2) = (−1)|v1|+(n

2
−1)|w|mn(↓v1⊗ ↓w⊗(n−2)⊗ ↓v2)

= (−1)
n
2
−1sn+1 ↓v1

= (−1)
n
2
−1(−1)

(n+2)(n+3)
2 ↓v1

= (−1)
n
2
−1(−1)(n

2
−1)(n+3) ↓v1 (∗)

If n
2

is even, then (∗) = (−1)odd(−1)odd*odd ↓v1 =↓v1.

If n
2

is odd, then (∗) = (−1)even(−1)even*odd ↓v1 =↓v1.



A FINITE DIMENSIONAL A∞ ALGEBRA EXAMPLE 5

Case 2: n is odd. Then

m′
n(↓v1⊗ ↓w⊗(n−2)⊗ ↓v2) = (−1)(n−1

2
)|w|mn(↓v1⊗ ↓w⊗(n−2)⊗ ↓v2)

= (−1)
n−1

2 sn+1 ↓v1

= (−1)
n−1

2 (−1)
(n+2)(n+3)

2 ↓v1

= (−1)
n−1

2 (−1)(n+2)(n+3
2

) ↓v1 (∗∗)

If n−1
2

is even, then (∗∗) = (−1)even(−1)odd*even ↓v1 =↓v1.

If n−1
2

is odd, then (∗∗) = (−1)odd(−1)odd*odd ↓v1 =↓v1.

Hence m′
n(↓v1⊗ ↓w⊗(n−2)⊗ ↓v2) =↓v1

The preceding arguments for cases 1 and 2 for m′
n(↓v1⊗ ↓w⊗(n−2)⊗ ↓v2) may be repeated

for m′
n(↓v1⊗ ↓w⊗(n−1)).

Thus m′
n(↓v1⊗ ↓w⊗(n−1)) =↓w �

Proof of Lemma 2.4. We first note that

D2(↓x1⊗ ↓x2 ⊗ · · ·⊗ ↓xn) =
∑

i+j≤n+1

m′
im

′
j(↓x1⊗ ↓x2 ⊗ · · ·⊗ ↓xn)

since m′
k(↓x1⊗ ↓x2 ⊗ · · ·⊗ ↓xl) = 0 for k > l. So

D2(↓x1⊗ ↓x2 ⊗ · · ·⊗ ↓xn) =
∑

i+j≤n

m′
im

′
j(↓x1⊗ ↓x2 ⊗ · · ·⊗ ↓xn)

+
∑

i+j=n+1

m′
im

′
j(↓x1⊗ ↓x2 ⊗ · · ·⊗ ↓xn)

Hence it suffices to show that
∑

i+j≤n

m′
im

′
j(↓x1⊗ ↓x2 ⊗ · · ·⊗ ↓xn) = 0

Consider
∑

i+j≤n

m′
im

′
j(↓x1⊗ ↓x2 ⊗ · · ·⊗ ↓xn): Since i + j ≤ n, we can break this sum up

into 4 different types of of elements in ↓ V ⊗k based on whether the first and last terms in

the tensor product contain m′
i or m′

j:

• Type 1: Elements with first term ↓x1 and last term ↓xn

(example: ↓x1⊗ ↓x2 ⊗m′
1(↓x3)⊗m′

2(↓x4⊗ ↓x5)⊗ ↓x6)

• Type 2: Elements with first term ↓x1 and last term containing m′
k for some k

(example: ↓x1⊗ ↓x2 ⊗m′
3(↓x3 ⊗m′

2(↓x4⊗ ↓x5)⊗ ↓x6))

• Type 3: Elements with first term containing m′
k for some k and last term ↓xn



6 MICHAEL P. ALLOCCA AND TOM LADA

(example: m′
2(↓x1⊗ ↓x2)⊗m′

1(↓x3)⊗ ↓x4⊗ ↓x5⊗ ↓x6)

• Type 4: Elements with first term containing m′
k and last term containing m′

l for some k, l

(example: m′
2(↓x1⊗ ↓x2)⊗ ↓x3⊗ ↓x4 ⊗m′

2(↓x5⊗ ↓x6))

Now each term of type 1 must be produced by m′
im

′
j with i + j ≤ n − 1. Hence, by

factorization of tensor products, all possible terms of type 1 are given by:

(−1)2|x1|−2
(
↓x1 ⊗

( ∑
i+j≤n−1

m′
im

′
j(↓x2⊗ ↓x3 ⊗ · · ·⊗ ↓xn−1)

))
⊗ ↓xn

=
(
↓x1 ⊗

(
D2(↓x2⊗ ↓x3 ⊗ · · ·⊗ ↓xn−1)

))
⊗ ↓xn

=
(
↓x1 ⊗ 0

)
⊗ ↓xn

= 0

since D2 = 0 when evaluated on n− 2 terms.

Now since all terms of type 1 form a collection of elements in ↓V ⊗k that sum up to 0, we

can duplicate this collection multiple times. This is significant when we consider all terms

of type 2 in conjunction with a set of type 1 terms. Combining all type 2 terms with a set

of type 1 terms and factoring tensor products, we get:

(−1)2|x1|−2 ↓x1 ⊗
( ∑

i+j≤n

m′
im

′
j(↓x2⊗ ↓x3 ⊗ · · ·⊗ ↓xn)

)
= ↓x1 ⊗

(
D2(↓x2⊗ ↓x3 ⊗ · · ·⊗ ↓xn)

)
= ↓x1 ⊗ 0

= 0

since D2 = 0 when evaluated on n− 1 terms.

Hence, all type 2 added together equal 0. All type 3 terms added together equal 0 following

a similar argument .

We now consider type 4 terms. Consider an arbitrary element of type 4:

m′
i(↓x1 ⊗ · · ·⊗ ↓xi)⊗ ↓xi+1 ⊗ · · ·⊗ ↓xn−j ⊗m′

j(↓xn−j+1 ⊗ · · ·⊗ ↓xn)

Consider how this arbitrary element is generated: We begin with

m′
im

′
j(↓x1 ⊗ · · ·⊗ ↓xn)

We then apply m′
j to the last j terms, which yields:

(−1)|x1|+···+|xn−j |−(n−j)m′
i(↓x1 ⊗ · · ·⊗ ↓xn−j ⊗m′

j(↓xn−j+1 ⊗ · · ·⊗ ↓xn))
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Finally we apply m′
i to the first i terms:

(−1)|x1|+···+|xn−j |−(n−j)m′
i(↓x1⊗· · ·⊗ ↓xi)⊗ ↓xi+1⊗· · · · · · ⊗ ↓xn−j⊗m′

j(↓xn−j+1⊗· · ·⊗ ↓xn) (∗)

Each of these arbitrary type 4 elements can be paired up with an element generated by

m′
jm

′
i as follows: Begin with

m′
jm

′
i(↓x1 ⊗ · · ·⊗ ↓xn)

Then apply m′
i to the first i terms:

m′
j(m

′
i(↓x1 ⊗ · · ·⊗ ↓xi)⊗ ↓xi+1 ⊗ · · ·⊗ ↓xn)

Finally, apply m′
j to the last j terms:

(−1)|x1|+···+|xn−j |−(n−j)+1m′
i(↓x1⊗· · ·⊗ ↓xi)⊗ ↓xi+1⊗· · · · · · ⊗ ↓xn−j⊗m′

j(↓xn−j+1⊗· · ·⊗ ↓xn) (∗∗)

Since these type 4 elements were arbitrary, and (∗) + (∗∗) = 0, all type 4 terms added

together equal 0. Hence, all type 1, 2, 3, and 4 terms yield 0, and so

∑
i+j≤n

m′
im

′
j(↓x1⊗ ↓x2 ⊗ · · ·⊗ ↓xn) = 0

�

Proof of Theorem 2.1. It is clear that each map mn is of degree 2− n. To prove that these

maps yield an A∞ structure, one may verify that they satisfy the identity given in definition

1.1. However, this is a rather daunting task, due to the varying signs, sn, accompanying the

mn maps. To utilize an alternative method of proof, we construct a degree 1 coderivation,

D, as described in section 1.

In the context of Theorem 2.1, we may use the definition for m′
k given by Lemma 2.2 to

construct D. It then suffices to show that D2 = 0.

We aim to prove D2 = 0 by induction on the number of inputs for D. It is worth first

noting that D =
∞∑

k=1

m′
k, however D(↓ x1 ⊗ · · ·⊗ ↓ xn) =

n∑
k=1

m′
k(↓ x1 ⊗ · · ·⊗ ↓ xn) since

m′
k(↓x1 ⊗ · · · ↓⊗xn) = 0 for k ≥ n.

For n = 1, we have D2(↓x) = m′
1m

′
1(↓x) =↓m2

1(x) = 0 ∀ x ∈ V .
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For n = 2, we have

D2(↓x1, ↓x2) = m′
1m

′
1(↓x1⊗ ↓x2) + m′

1m
′
2(↓x1⊗ ↓x2)

+ m′
2m

′
1(↓x1⊗ ↓x2) + m′

2m
′
2(↓x1⊗ ↓x2)

= m′
1(m

′
1(↓x1)⊗ ↓x2 − (−1)|x1|x1 ⊗m′

1(x2)) + m′
1m

′
2(↓x1⊗ ↓x2)

+ m′
2(m

′
1(↓x1)⊗ ↓x2 − (−1)|x1|x1 ⊗m′

1(x2)) + 0

= [m′
1m

′
1(↓x1)⊗ ↓x2 + (−1)|x1|m′

1(↓x1)⊗m′
1(↓x2)]

− (−1)|x1|[m′
1(x1)⊗m′

1(x2)− (−1)|x1|x1 ⊗m′
1m

′
1(x2)] + m′

1m
′
2(↓x1⊗ ↓x2)

+ m′
2(m

′
1(↓x1)⊗ ↓x2)− (−1)|x1|m′

2(x1 ⊗m′
1(x2))

= m′
1m

′
2(↓x1⊗ ↓x2) + m′

2(m
′
1(↓x1)⊗ ↓x2)− (−1)|x1|m′

2(x1 ⊗m′
1(x2))

= 0 ∀ x1, x2 ∈ V

Now assume D2(↓x1 ⊗ · · · ↓⊗xn−1) = 0. We aim to show that D2(↓x1 ⊗ · · · ↓⊗xn) = 0:

By Lemma 2.4, D2(↓ x1 ⊗ · · · ↓⊗xn) =
∑

i+j=n+1

m′
im

′
j(↓ x1 ⊗ · · · ↓⊗xn), hence it suffices to

show that
∑

i+j=n+1

m′
im

′
j(↓x1 ⊗ · · · ↓⊗xn) = 0, ∀ x1 · · ·xn ∈ V .

It is advantageous to approach this problem from the bottom up, since x1 · · ·xn ∈ V

implies calculating 3n different combinations of elements. That is, we consider only nontrivial

(nonzero) elements in the sum
∑

i+j=n+1

m′
im

′
j(↓x1 ⊗ · · · ↓⊗xn). Now since i + j = n + 1, we

observe that m′
im

′
j(↓x1 ⊗ · · · ↓⊗xn) ∈ ↓V ⊗1. Since, by definition, m′

i cannot produce the

element ↓v2, the seemingly large task of considering nontrivial m′
im

′
j(↓x1⊗· · · ↓⊗xn) yields

only two possibilities:

m′
im

′
j(↓x1 ⊗ · · · ↓⊗xn) = c ↓v1

or m′
im

′
j(↓x1 ⊗ · · · ↓⊗xn) = c ↓w for some constant, c.

Remark 2.5. Since production of a ↓ v1 or ↓w relies on the number of v’s and w’s in the

arrangement ↓x1 ⊗ · · · ↓⊗xn, these possibilities are disjoint.

Therefore if m′
im

′
j(↓ x1 ⊗ · · · ↓ ⊗xn) 6= 0 for some i + j = n + 1, then

∑
i+j=n+1

m′
im

′
j(↓

x1 ⊗ · · · ↓⊗xn) contains a collection of ↓v1’s or ↓w’s.

We first consider the manner in which m′
im

′
j(↓x1 ⊗ · · · ↓⊗xn) yields a ↓w:

By defintion of m′
n, ↓ w must be produced by m′

i(↓ v1⊗ ↓ w⊗(i−1)) (∗). Now since a

nonzero m′
j will contribute either the ↓ v1 or a ↓w to the arrangement ↓ v1⊗ ↓w⊗(i−1) , the
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original arrangment ↓ x1 ⊗ · · · ↓ ⊗xn must contain exactly one more ‘v’ (v = v1 or v2), for

a total of two v’s. It is also worth nothing that x1 = v1, otherwise m′
im

′
j(↓x1⊗· · · ↓⊗xn) = 0.

• Case 1: v = v1. Then we have m′
im

′
j(↓v1⊗ ↓w⊗k⊗ ↓v1⊗ ↓w⊗(n−2)−k), 0 ≤ k ≤ n− 2.

Now, to produce (∗), m′
j must ‘catch’ (1) both ↓v1’s, or (2) only the second ↓v1.

(1) We have m′
j(↓v1⊗ ↓w⊗k⊗ ↓v1⊗ ↓w⊗(n−2)−k) =↓v1, k + 2 ≤ j ≤ n.

This yields m′
i(↓v1⊗ ↓w⊗(n−j)) =↓w. Now since k + 2 ≤ j ≤ n, there are n− (k + 2) + 1 =

n− k − 1 such terms in
∑

i+j=n+1

m′
im

′
j(↓v1⊗ ↓w⊗k⊗ ↓v1⊗ ↓w⊗(n−2)−k).

(2) We have (−1)|v1|+k|w|−(k+1)m′
i

(
↓v1⊗ ↓w⊗k⊗

[
m′

j(↓v1⊗ ↓w⊗(j−1))
]
⊗ ↓w⊗(n−2)−k−(j−1)

)
=

− ↓w, 1 ≤ j ≤ n− k− 1. Similarly, there are (n− k− 1)− 1 + 1 = n− k− 1 such terms in∑
i+j=n+1

m′
im

′
j(↓v1⊗ ↓w⊗k⊗ ↓v1⊗ ↓w⊗(n−2)−k).

⇒
∑

i+j=n+1

m′
im

′
j(↓v1⊗ ↓w⊗k⊗ ↓v1⊗ ↓w⊗(n−2)−k) = (n− k − 1) ↓w − (n− k − 1) ↓w = 0.

• Case 2: v = v2. Then we have m′
im

′
j(↓v1⊗ ↓w⊗k⊗ ↓v2⊗ ↓w⊗(n−2)−k), 0 ≤ k ≤ n− 2.

Similarly, to produce (∗), m′
j must ‘catch’ (1) both ↓v1 and ↓v2, or (2) only ↓v2.

For (1), the only nontrivial way to do this yields:

m′
n−k−1(m

′
k+2(↓v1⊗ ↓w⊗k⊗ ↓v2)⊗ ↓w⊗(n−2)−k) =↓w

and for (2), the only nontrivial way to do this yields:

(−1)|v1|+k|w|−(k+1)m′
n(↓v1⊗ ↓w⊗k ⊗m′

1(↓v2)⊗ ↓w⊗(n−2)−k) = − ↓w

⇒
∑

i+j=n+1

m′
im

′
j(↓v1⊗ ↓w⊗k⊗ ↓v1⊗ ↓w⊗(n−2)−k) =↓w− ↓w = 0.

In either case, if m′
im

′
j(↓x1 ⊗ · · · ↓⊗xn) produces ↓w’s, then∑

i+j=n+1

m′
im

′
j(↓x1 ⊗ · · · ↓⊗xn) = 0.

We now consider the manner in which m′
im

′
j(↓x1 ⊗ · · · ↓⊗xn) yields a ↓v1:
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By defintion of m′
n, ↓v1 must be produced by either m′

i(↓v1⊗ ↓w⊗k⊗ ↓v1 ⊗w⊗(i−2)−k) or

m′
i(↓v1⊗ ↓w⊗(i−2)⊗ ↓v2).

• Case 1: ↓v1 is produced by m′
i(↓v1⊗ ↓w⊗k⊗ ↓v1⊗ ↓w⊗(i−2)−k).

We examine the 4 different possibilities for which m′
j can yield this arrangement:

(i) m′
j produces the first ↓v1. (ii) m′

j produces a ↓w in ↓w⊗k.

(iii) m′
j produces the second ↓v1. (iv) m′

j produces a ↓w in ↓w⊗(i−2)−k.

A key observation to make here is that (i), (ii), (iii), and (iv) imply that the original

arrangement ↓ x1 ⊗ · · ·⊗ ↓ xn must contain exactly 3 v’s, once again with x1 = v1. This

yields 4 subcases:

Subcase 1 : We have m′
im

′
j(↓v1⊗ ↓w⊗k⊗ ↓v1⊗ ↓w⊗l⊗ ↓v1⊗ ↓w⊗n−k−l−3):

(i) m′
j must take the first two ↓v1’s. We have:

m′
i

([
m′

j(↓v1⊗ ↓w⊗k⊗ ↓v1× ↓w⊗j−k−2)⊗ ↓w⊗l−(j−k−2)
]
⊗ ↓v1⊗ ↓w⊗n−k−l−3

)
=↓v1

Now k + 2 ≤ j ≤ l + k + 2, so there are (l + k + 2)− (k + 2) + 1 = l + 1 such terms.

(ii) m′
j must take only the second ↓v1. We have:

(−1)|v1|+k|w|−(k+1)m′
i

(
↓v1⊗w⊗k⊗

[
m′

j(↓v1⊗ ↓w⊗(j−1))⊗w⊗l−(j−1)
]
⊗ ↓v1⊗ ↓w⊗n−k−l−3

)
= − ↓v1

Now 1 ≤ j ≤ l + 1, so there are (l + 1)− 1 + 1 = l + 1 such terms.

(iii) m′
j must take the second and third ↓v1’s. We have:

(−1)|v1|+k|w|−(k+1)m′
i

(
↓v1⊗w⊗k⊗

[
m′

j(↓v1⊗ ↓w⊗l⊗ ↓v1⊗ ↓w⊗j−l−2)
]
⊗ ↓w⊗n−k−j+1

)
= − ↓v1

Now l + 2 ≤ j ≤ n− k− 1, so there are (n− k− 1)− (l + 2) + 1 = n− k− l− 2 such terms.

(iv) m′
j must take only the third ↓v1. We have:

(−1)2|v1|+(k+l)|w|−(k+l+2)m′
i

(
↓v1⊗w⊗k⊗ ↓v1⊗ ↓w⊗l⊗

[
m′

j(↓v1⊗ ↓w⊗(j−1))⊗ ↓w⊗n−k−l−j−2
])

=↓v1

Now 1 ≤ j ≤ n− k − l − 2, so there are (n− k − l − 2)− 1 + 1 = n− k − l − 2 such terms.
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⇒
∑

i+j=n+1

m′
im

′
j(↓ v1⊗ ↓w⊗k⊗ ↓ v1⊗ ↓w⊗l⊗ ↓ v1⊗ ↓w⊗n−k−l−3) = (l + 1) ↓ v1 − (l + 1) ↓

v1 − (n− k − l − 2) ↓v1 + (n− k − l − 2) ↓v1 = 0.

◦ Subcase 2 : We have m′
im

′
j(↓v1⊗ ↓w⊗k⊗ ↓v1⊗ ↓w⊗l⊗ ↓v2⊗ ↓w⊗n−k−l−3):

By the nature of m′
n, it is advantageous to consider whether or not n− k − l − 3 = 0:

If n− k − l − 3 = 0:

(i) m′
j must take the first two ↓v1’s. We have:

m′
i

([
m′

j(↓v1⊗ ↓w⊗k⊗ ↓v1× ↓w⊗j−k−2)⊗ ↓w⊗l−(j−k−2)
]
⊗ ↓v2

)
=↓v1

Now k + 2 ≤ j ≤ l + k + 2, so there are (l + k + 2)− (k + 2) + 1 = l + 1 such terms.

(ii) m′
j must take only the second ↓v1. We have:

(−1)|v1|+k|w|−(k+1)m′
i

(
↓v1 ⊗ w⊗k ⊗

[
m′

j(↓v1⊗ ↓w⊗(j−1))⊗ w⊗l−(j−1)
]
⊗ ↓v2

)
= − ↓v1

Now 1 ≤ j ≤ l + 1, so there are (l + 1)− 1 + 1 = l + 1 such terms.

(iii) m′
j must take the second ↓v1 and ↓v2. The only nontrivial way to do this is:

(−1)|v1|+k|w|−(k+1)m′
n−l−1

(
↓v1 ⊗ w⊗k ⊗

[
m′

l+2(↓v1⊗ ↓w⊗l⊗ ↓v2)
])

= − ↓v1

(iv) m′
j must take only ↓v2. We have:

(−1)2|v1|+(k+l)|w|−(k+l+2)m′
n

(
↓v1 ⊗ w⊗k⊗ ↓v1⊗ ↓w⊗l ⊗

[
m′

1(↓v2)
])

=↓v1

⇒
∑

i+j=n+1

m′
im

′
j(↓v1⊗ ↓w⊗k⊗ ↓v1⊗ ↓w⊗l⊗ ↓v2) = (l+1) ↓v1−(l+1) ↓v1− ↓v1+ ↓v1 = 0.

If n− k − l − 3 6= 0:

(i) and (ii) are trivial.

(iii) m′
j must take the second ↓v1 and ↓v2. The only nontrivial way to do this is:

(−1)|v1|+k|w|−(k+1)m′
n−l−1

(
↓v1 ⊗ w⊗k ⊗

[
m′

l+2(↓v1⊗ ↓w⊗l⊗ ↓v2)
]
⊗ ↓w⊗n−k−l−3

)
= − ↓v1

(iv) m′
j must take only ↓v2. We have:

(−1)2|v1|+(k+l)|w|−(k+l+2)m′
n

(
↓v1 ⊗ w⊗k⊗ ↓v1⊗ ↓w⊗l ⊗

[
m′

1(↓v2)
]
⊗ ↓w⊗n−k−l−3

)
=↓v1

⇒
∑

i+j=n+1

m′
im

′
j(↓v1⊗ ↓w⊗k⊗ ↓v1⊗ ↓w⊗l⊗ ↓v2⊗ ↓w⊗n−k−l−3) = − ↓v1+ ↓v1 = 0.
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◦ Subcase 3 : We have m′
im

′
j(↓v1⊗ ↓w⊗k⊗ ↓v2⊗ ↓w⊗l⊗ ↓v1⊗ ↓w⊗n−k−l−3):

(i) m′
j must take the first ↓v1 and ↓v2. The only nontrivial way to do this is:

m′
n−k−1

([
m′

k+2(↓v1⊗ ↓w⊗k⊗ ↓v2)
]
⊗ ↓w⊗l⊗ ↓v1⊗ ↓w⊗n−k−l−3

)
=↓v1

(ii) m′
j must take ↓v2 only. The only nontrivial way to do this is:

(−1)|v1|+k|w|−(k+1)m′
n

(
↓v1 ⊗ w⊗k ⊗

[
m′

1(↓v2)
]
⊗ ↓w⊗l⊗ ↓v1⊗ ↓w⊗n−k−l−3

)
= − ↓v1

Now (iii) and (iv) are trivial.

⇒
∑

i+j=n+1

m′
im

′
j(↓v1⊗ ↓w⊗k⊗ ↓v2⊗ ↓w⊗l⊗ ↓v1⊗ ↓w⊗n−k−l−3) =↓v1− ↓v1 = 0.

◦ Subcase 4 : We have m′
im

′
j(↓v1⊗ ↓w⊗k⊗ ↓v2⊗ ↓w⊗l⊗ ↓v2⊗ ↓w⊗n−k−l−3):

If n− k − l − 3 6= 0, then this is trivial. Assume n− k − l − 3 = 0.

(i) m′
j must take the first ↓v1 and first ↓v2. The only nontrivial way to do this is:

m′
n−k−1

([
m′

k+2(↓v1⊗ ↓w⊗k⊗ ↓v2)
]
⊗ ↓w⊗l⊗ ↓v2

)
=↓v1

(ii) m′
j must take second ↓v2 only. The only nontrivial way to do this is:

(−1)|v1|+k|w|−(k+1)m′
n

(
↓v1 ⊗ w⊗k ⊗

[
m′

1(↓v2)
]
⊗ ↓w⊗l⊗ ↓v2

)
= − ↓v1

Now (iii) and (iv) are trivial.

⇒
∑

i+j=n+1

m′
im

′
j(↓v1⊗ ↓w⊗k⊗ ↓v2⊗ ↓w⊗l⊗ ↓v2⊗ ↓w⊗n−k−l−3) =↓v1− ↓v1 = 0.

Hence, our result holds for case 1.

• Case 2: ↓v1 is produced by m′
i(↓v1⊗ ↓w⊗(i−2)⊗ ↓v2).

We examine the 2 different possibilities for which m′
j can yield this arrangement:

(i) m′
j produces the ↓v1.

(ii) m′
j produces a ↓w in ↓w⊗(i−2).
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A similar observation to case 1 can be made here regarding the original arrangement

↓ x1 ⊗ · · ·⊗ ↓ xn containing exactly 3 v’s, once again with x1 = v1. In this case, xn = v2.

This yields 2 subcases:

◦ Subcase 1 : We have m′
im

′
j(↓v1⊗ ↓w⊗k⊗ ↓v1⊗ ↓w⊗(n−k−3)⊗ ↓v2)

(i) m′
j must take both ↓v1’s. We have:

m′
i

([
m′

j(↓v1⊗ ↓w⊗k⊗ ↓v1⊗ ↓w⊗j−k−2)
]
⊗ ↓w⊗n−j−1⊗ ↓v2

)
=↓v1

Now k + 2 ≤ j ≤ n− 1, so there are (n− 1)− (k + 2) + 1 = n− k − 2 such terms.

(ii) m′
j must take the second ↓v1 only. We have:

(−1)|v1|+k|w|−(k+1)m′
i

(
↓v1 ⊗ w⊗k ⊗

[
m′

j(↓v1⊗ ↓w⊗j−1)⊗ ↓w⊗n−k−j−2
]
⊗ ↓v2

)
= − ↓v1

Now 1 ≤ j ≤ n− k − 2, so there are (n− k − 2)− (1) + 1 = n− k − 2 such terms.

This implies that∑
i+j=n+1 m′

im
′
j(↓v1⊗ ↓w⊗k⊗ ↓v1⊗ ↓w⊗(n−k−3)⊗ ↓v2) = (n−k−2) ↓v1−(n−k−2) ↓v1 = 0.

◦ Subcase 2 : We have m′
im

′
j(↓v1⊗ ↓w⊗k⊗ ↓v2⊗ ↓w⊗(n−k−3)⊗ ↓v2)

(i) m′
j must take ↓v1 and the first ↓v2. The only nontrivial way to do this is:

m′
n−k−1

([
m′

k+2(↓v1⊗ ↓w⊗k⊗ ↓v2)
]
⊗ ↓w⊗n−k−3⊗ ↓v2

)
=↓v1

(ii) m′
j must take second ↓v2 only. The only nontrivial way to do this is:

(−1)|v1|+k|w|−(k+1)m′
n

(
↓v1 ⊗ w⊗k ⊗

[
m′

1(↓v2)
]
⊗ ↓w⊗n−k−3⊗ ↓v2

)
= − ↓v1

Now (iii) and (iv) are trivial.

⇒
∑

i+j=n+1

m′
im

′
j(↓v1⊗ ↓w⊗k⊗ ↓v2⊗ ↓w⊗(n−k−3)⊗ ↓v2) =↓v1− ↓v1 = 0.

Hence, our result holds for case 2.

So
∑

i+j=n+1

m′
im

′
j(↓x1 ⊗ · · · ↓⊗xn) = 0, ∀ x1 · · ·xn ∈ V .

Thus D2(↓x1 ⊗ · · · ↓⊗xn) = 0

By induction, D2 = 0 on any number of inputs.
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Hence the preceding maps mn on the graded vector space V form an A∞ algebra. �

3. Induced L∞ Algebra

The A∞ algebra structure on V = V0 ⊕ V1 that was constructed in this note may be skew

symmetrized to yield an L∞ algebra structure on V ; see [5] for details. This L∞ algebra will

thus join the collection of previously defined such structures on V . The relationship among

these algebras will be a topic for future research.
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