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APPLICATIONS OF THE MILLER SPECTRAL SEQUENCE

David Krainesl and Thomas Lada2

1. TINTRODUCTION. A k-connected 2 spectrum X is a sequence of n + k con—

nected compactly generated Hausdorff spaces Xn with nondegenerate basepoints,
together with based homotopy equivalences X = OX,47- See [A2] and [M1] for
more details. For example, if Y is a k-connected space, then I®Y is the

k-connected 2 spectrum with nth space QZnY = lim ﬂNEN+nY. If X is a
N X,

k~connected 9 spectrum, then IX is the k + 1 connected 2 spectrum with nth

space Xn+l'

If m is an abelian group, then K(m) is the -1 connected §
th
spectrum with n~ space K(r,n).

There are -1 connected @ spectra ko and Eg_with oth spaces Z x BO and

Z x BU which have proved quite important in many aspects of algebraic

topology [A2]. In this paper we will be especially interested in the 0
th

connected spectrum Iko with 0 space B(Z x BO) = U/O.

Let G be the space of stable self equivalences of spheres. There is a

natural map J:0—»G where O is the infinite orthogonal group given by

ez < -+
restricting orthogonal transformations on R 1

to S". Boardman and Vogt [BV]
have shown that G is the Oth space of an § spectrum g and that J induces a map
of @ spectra. Thus there is a 1 connected § spectrum g§/0 whose Oth space is
G/0. The study of the spectrum g/o should have implications in stable
homotopy theory. For example, ﬂk(g/a) = ﬂk(G/O) is closely related to the

- stable stem.

Throughout this paper all homology and cohomology groups will have Z/2

coefficients. If X is a -1 connected Q spectrum, then define

Hq(x) = 1lim H (Xn). Connectivity implies that Hq(X) =H (Xn) for n > q.
et = i

q+n
Similarly define Hq(§) =H

q+tn

q+n(Xn} for n > q.

Examples:
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11) B GPY) =H £y
a0 LO7D = B @)
. Tl
: fi gy D)
= 5 (Y).
q( )

(1.2) H*(R(Z/2)) iq, the mod 2

Steenrod algebra.

1.3) W) = ala(sa’,sa) [ALl.
- 1 2
(1.4) B*(ko) = a/a(Sq ,5q7) [s].

1.5 "D = sEieo = ).
Haynes Miller and Stewart Priddy [MP] conjectured the existence of a
fibration of infinite loop spaces relating G/0 to a stable fibration over

Qs®. A corollary of their conjecture is that
2 1.3 -1~ 1 2
(1.6) Hx(g/e) = 8" a/a(Sq »5q y@®s a/a(Sq »5q )

as Z/2 modules where a4 is the augmentation jdeal of a. In the next section
we will describe the Miller spectral sequence OT (MSS) which converges to the
cohomology of O-connected spectra. The authors have been able to show that
the E, term of the MSS converging to H%(g/0) is isomorphic to the module in
(1.6). 1In this paper we give a crucial step in this proof, namely the

" computation of the MSS converging to H*(Iko).

2. THE MILLER SPECTRAL SEQUENCE. The Miller delooping spectral sequence

converges to the homology or cohomology of -1 connected Q spectra. If X is a
th -

O-connected spectrum with 0 space X such that Hy(X) is a polynomial algebra,

then Miller has described the homology EZ term as an unstable Tor functor over
the Dyer Lashof algebra R on the quotient module QHy (X) of indecomposables.

In this section we outline his method for computing EZ. More precisely, we
describe a bigraded complex Lp’q(X) whose cohomology is the cohomology
Ezp’q(x) term of the MSS converging to H*(§).

Definition 2.1. Let L be the associative algebra on symbols g(a) for a > 1,

where we abbreviate U(al,...,ap) = c(al)...c(ap), subject to the (Adem)
relations

O'(a,b) = E (Z:]i:]?j) U(a+b“j ’j)-
h|

Let L(n) be the submodule of L generated by sequences g (1) for

T = (L.4Ll,ex5l + i i i j
( ] ip 1) satisfying ij > 1j+1+...+1p +n for 1 < j < p. Thus L(n)
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is Isomorphic to a submodule of the Steenrod algebra via the assignment
a a
o(al,...,ap)k~>Sq l...Sq P This implies that a basis for L(n) consists of

admissible sequences c(al,...,as) with a_ >n+ 1, i.e. sequences with
2, 372aj+l. Note that L(n) is closed under the Adem relations. For

¢ ;
example, if 2b > a > b+ n + 1, then it is easy to check that (Z_%Ej) =0

if j <a-b<n+ 1. The relations (3.3.7) in [M3] are known to be
equivalent to these. See the proof of Lemma 4.5 below.

If X is an infinite loop space then H*(X) has an adjoint Dyer Lashof
action Q::Hn(x)-iHn—r(X). By the Cartan formula for homology operations
this action clearly extends to PH*(X), the module of primitive cohomology

classes of X. For more details see [M2].

Definition 2.2. Let X be a connected infinite loop space. Then Lp’qci) is the

bimodule @ L(n) ® PH"(X) where bideg G(al,...,ap)u = (p, Zay + n) if
n>o

UEPH"(X). The differential is given by
n-1
do(D)u = z o(I,r + l)Q: U
r=[§]

Note that since er = (0 if r < dim x, we have Q: p=01if r s n - r. Thus

(I, r + 1) ¢ L{n - r) and thus d is well defined. See [M3] for more details.

Theorem 2.3. (Miller). If X is a O-connected infinite loop space and if

H,(X) is a polynomial alpebra over Z/2, then Ezp’q(x) = iPYLx)).
Proof. See Theorem 3.3.16 and p. 144 [M3].

Remark 2.4. In a forthcoming paper [KL2] we generalize this theorem to
arbitrary connected infinite loop spaces with coefficients in Z/p. Furthermore
we apply this to get results on the Miller spectral sequence of Postnikov
systems and to construct and evaluate higher order Dyer Lashof operations.

If X = QY or if X = K(Z/2, n), then the MSS is fairly easy to compute.
Except in these situations and minor modifications of them, only partial
computations have appeared (see [M3], [KL1]). The main result of this paper is
the computation of EZ(U/O). This result can be applied directly to descrihe
the MSS for other spaces such as BU, SU, etc. Most importantly, using a
theorem of Tornehave [T], we can show that EZ(G/O).can be easily computed yia
these results. Indeed EZ(G/O) is isomorphic to the module in equation (1.6).
Moreover there are very stringent algebraic restrictions on the higher
differentials. The existence of nontrivial higher differentials appears to be

related to the Arf invariant question. Details will appear later.
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3, THE MILLER SPECTRAL SEQUENCE FOR U/0. First recall that
H,(U/0) = Z/2 [kl’kZ""] where dim k_ = 2t - 1. Moreover the Dyer Lashof

- 2r+1
action is given by erks = (;_i) ks—r and Q z ks = 0. [K1].

2t-1 " . _
H (U/0) has primitive classes k with <kt’ k;} =4 . Moreover

Thus s.t
3

@ir Kgs kt—r> = {5 Q.zrkt—r> - (E:i—-l) ¢ s

2r r-1 . —
Q. Ky = (t—r—l) Keop We have thus proved the following description of the

fundamental complex L(U/0) for EZ(U/O).

Proposition 3.1. A basis for Lp’q(U/O) consists of admissible sequences

U(al,...,ap)Kt. That is sequences satisfying a, > 2t + 1, a; 37231+1 for
i=1,...,p -1, and q = Eaj + 2t - 1. The differential is given by
t-1
do ( B ) =l ( 2r + 1)
a(ays--eaay Ky ) sl al,...,ap, r Kp oo
]

r=[§

Note that U(I)K1 is a cocycle for all I. Also the summand with t - r =1
is always nonzero if t > 1. The expression U(al,...,ap, 2r + 1) is not in
general admissible. For example d0(5)|<2 = U(S,B)Kl = B

Our main result is that H(L(U/0)) = EZ(UIO) is isomorphic (at least as

Z2/2 modules) to E_ = H*(Zko) = Sa/a(Sql,qu). In order to prove this, we

must examine the ideal a(Sql,qu), or more precisely a filtered versiom of it,
more closely.

Definition 3.2. Let Gka = {SqI:I is admissible and 2(I) > k}. If M is a

submodule of a, then set GkM = M(\Gka. Finally let GOM = C)GkM/Gk+1M be
k>0

the associated graded object.

Remark 3.3. Note that there are isomorphisms of bigraded modules L(-1) * G a
- 1 o]
and L(0Q) = (Goa)/(GOaSq Y

Proposition 3.4. Goa(Sql,qu) is generated by elements of the following

types:
ag a, 1

a) S ...5q"Sq” with (a,,..-,3_,1) admissible
q q ©°q i a,

k
Bl e, THL
b) Sq '...Sq°Sq” "' with (a;,...,a ) adnissible and a > 2+ 1 for k > 0.

Remark 3.5. We emphatically do not assert that these elements form a basis
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5, 2
for a(Sql,qu). Indeed ngSql‘Sq_3 = ngsq Sq = Q.

I, 1 L. 2 :
Proof. a(Sql,qu) has generators Sq Sq and Sq¢'Sq as I = (al,...,ap)
—— I, 1 o i
ranges over admissible sequences. If ap = 1, then Sq 8q~ = 0 while if

- I, 2
ap - Squql is admissible of type (a). If a, > 4, then Sq Sq. is

2

admissible of type (b). If ap = 3,Sq-ISq = Q0 and if ap = 2, it is in a',ScL1

since SqZSqZ = SqSSql.

Assume finally that we can write I = (_al,.. . ,ap_k,zkpl,. ..,2,1) with

K 2t 2ta _  2¥a

a > 2" 4+ 1. By the Adem relations, Sq"~ 'Sq 8q + terms of

p-k
length 2. (See also Lemma 4.1). Thus modulo terms of higher length,

k
I, 2 ! qp-k, 241
Sq'8q" = 8g T.esSg T Bg s .

By applying the derivation |<2 of Kristensen [K2] to the relation

k+1 k k k k+1
Sq_z +15q2 T 0, we see that qu H‘qu s Sq‘2 Sq. . This is

k
equivalent to applying Elzﬂ where El is the Milnor dual of Sql and /N
" is the cap pailring a ® an-—) o See also the proof of Lemma 4.5.

Thus if ap-k = 2k + 1, SqISq2 £ aSql and so we may assume that ap_k > 2k + 1.

To compute the cohomology of L(U/0), first define a filtration of it by
letting Ft = By L(U/0) be generated by O'(I)KS for s < t. Note that
d(F) < th & By g

2

Definition 3.6. Let

c:1P29¢u/0) — P19 (u/0)

be defined inductively as follows:
1) e(k,) =0 for all t

k i+l

0 if a# 27 "+l

1+1+

2) C(o(a)Kt)

K idif a=2 1

t+2

3) cc(a,J)xt o(a) ccr(J):ct

1

if a # 2m+ + 1 and o(a,J) is admissible
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4 1f o™ + 1, b, K) is admissible then

co(2m+1 +1, b, Kk, = a(2™ + b) co(2™ + 1, Kk,

m
) 24 mtl

+ a(2 +14+b~73) cali, K)Kt

j>b+l 2m+b—2j

2™

= E Y.U(2m+1

j=b+l

+14+b~-3) co(d, K)Kt

j m

2™4
where vy, = i ifb+1<] E_Zm and y = L
2" 4p-24 2741

Remark 3.7. Some discussion of this definition is in order. First note that

s 41, b) = 0@+ B)o (2" + 1)
2™
+ E ” 0(2m+1 +1+b -1 ald)
jra | 2™4b-2j

is an Adem relation (on the second summand) . Moreover this coefficient is 1
whenever j = 2% + 1 in the dimension range by Lemma 4.1 below. Thus we may

write
o (@™ + 1, b, Bk, = [Yja(z‘”l +1+0b - elold, Nk,

whereyj=1ifj=25+1for2‘“+13j>b.

We will see that th = G(21+l + l)Kt_zi 4+ terms in which r is not a

power of 2. Thus cdxt = g, . In general, to compute C(G(a,J))Kt we can just

mt+l

t
push c over if a # 2™ + 1. To compute co(2 + 1, b, K)Kt, we just rewrite
this expression as a sum of nonadmissible sequences nome of which start with
2° + 1 and then push c over.

We now state the main technical theorem. The proof is quite long and
will occupy sections 4 and 5. This theorem will be the key step in our
future work of evaluating the MSS for related spaces such as BU and SU as

well as the E2 term for G/O.
Theorem 3.8. If t > 1, then

dCU(I)Kt + cdc(I)xt = U(I)Kt mod Ft_l.
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Corollary 3.9. Let aeL(U/0) be a cocycle. Then o is cohomologous to a
cocycle a”e Ec(Ii)xl € Fl'

Proof: Write o = a,+...4a,_ where o, = To(I,.)k.. If t > 1 then
B t ] R R |

1
dea + cda = dea = o mod Ft-l' This means that d(ca) = @ - o for some

o eF The result follows by repeating this process t - 1 times.

L
We need only partial control over the boundaries in F, to evaluate

1
H(L(U/0)) = E,(U/0).

Lemma 3.10. do(I)x g = U(I)U(ZS+1

1+2

Proof. By definition of d it suffices to prove this for I = ¢. Note that

+ l)Kl.

S

-l r-1 r-1
de =5 o(2r + 1)k and that vy = = 5
25-¢ 1+25-r 2% 2r-25-1

Clearly vy = 1 if r = 2%, Also it is easily seen that vy = 0 if r > 2% or

591 Asaume that 257F « x < 2° and weite ¥ = 2500 + 1) Eor

b 2825 4, hen 1= 1= 1 b 2d b T 2Ty it

i+2

r

| A

By o 1 = BF m B o o 3T Y b - 25—i—2)’ By comparison of the
coefficients of 2° we see that y = 0 by Lemma 26 [SE].

We can finally state and prove the main result of this paper.
‘Theorem 3.11. There is an isomorphism Goa/Go(a(Sql,qu))-—9E2(U/0).

Proof. Let ¢:Goa-*9FlL(U/O) be the degree 1 map given by SqI__gc(I)Kl

where we set o(a ,ap)Kl =0 if ap =1 or 2. Then ¢ is a surjection
i 4

with kernel generated by admissible operations Sq ~...8q P

i

with iP =1 or 2.

By Proposition 3.4,Goa(sql,sq2) is generated by these elements together

a a s+1
+1 s+l "

with elements Sgq 1...Sq qu with a, > 2 1. Since

2s+1

c(al,...,ap, +1)K1 = do(al,...,ap)xl+zs, it follows that ¢ induces a

surjection
¢ :G a/G _a(s r s 2)—-—=.~F /Im d NF
o' o g2 BRg 1: 1

= H(L(U/0)).

Thus L  dim (G_a/G a(sqt,5qHP 9 >
(o] o T
p+tg=n-1



486 DAVID KRAINES AND THOMAS LADA

I i #%@/o)) = L dim P
p+gen ptq=n

I aim E 2% = aim 1" (zko) = dim (a/a(Sq",5¢)™ 1),
ptg=n

It follows that all the inequalities are equalities and thus ¢0 is an

isomorphism.

4., TECHNICAL LEMMAS. We start off with a result concerning the binomial

m m
. =+
coefficient appearing in the Adem relation for Sqa k qu +l.
m
273
Lemma 4.1. Assume that a > 1. Then vy, = ( ) =1 (mod 2) if
et Al 5. ot m ,.
at+2"-2j

j=2°+1land 2" +1>25+1>a. Ifa-=2%41 then Y; = 0 (mod 2)
if § # 2° 4+ 1. Thus

m
T il L L I R LIS
Sq Sq = 0.
s=q
Proof. Using the equality {;) = (ifj) , first write
m A8
27-27-1
» - and note that 2™ - 25 -1 = 1 + 2 +...42571 4 p5*1
2541 25-atl
m—-1 : s ]
+...+ 2 . Since a > 1, we have that 2° = a+ 1 < 2” - 1 and so vy =1

s

+

by Lemma 2.6 [SE]. 2
Now assume that a = 2% + 1 and that j - 1 is not a power of 2. Write

j-1= 2%+ 27 4+ 2y+lz for x < y and z > 0. In the expansion

m ¥ m _ _ d - .
27 - 3= (2 1) (j 1) bo +...+ b12 +... we see that bx by 0.

In the expansion j - 1 - 29 = ¢ ...+ c.Zi +..., it is easy to check that at
Xp o i

least one of e, or cy is 1. Since (?) =0, Ty = 0 by the same lemma of [SE].

Finally the last equations follow from the above and the Adem relation for

2M42%%1 _ 2™41
Sq Sq .

The next three results are used to compute the contraction ¢ on a class
of nonadmissible generators of L(U/0). Recall that omne may identify L(n) with
the underlying module of the Steenrod algebra provided that attention is

restricted to sequences in L{n).

Lemma 4.2. Assume that c(al,...,ap)s L is admissible and that ap >b + 1



e

APPLICATIONS OF THE MILLER SPECTRAL SEQUENCE 487

rey

while a; < 2Pp 4+ 1. Then U(al,...,ap, b+ 1) = g(2Pp + 1, a; - 2p_lb,.

o a
ap - b) + éb(bo ,...,bp ) in admissible form where the latter sum setisfies

boc‘ < 2Ph + 1 for all o,

Proof. Note that the inequalities Zp-lap KX 2a2 =< a, <2Pp 41 imply that

ap < 2b + 1 so that c(ap, b + 1) is not admissible. If p =1, then

ofa, b + 1)

]

b-j
) aa+b-3+1, 5.
a-2j

The coefficient is 0 if a - 2 >b - j, that is if a - p > j, and it is 1
if a -~ b = j. Thus o(a, b + 1) = o(2b+ 1, a - b) + terms of lower
lexicographic order.

We now proceed by a double induction on b and p. If b = 0, then the
lemma is vacuously true for all p. Assume that the lemma is true for all
sequences of length < p and for all Ssequences of length = p with right hand
entry < b + 1. Then O(al,...,ap, b+1) =

..,ap_l, 2b + 1, ap - b) + u.U(al,...

o(a,,. ,a a +b -~ i, j)
1 b>j>a -b 1] p_l, P d
- P
for some numbers My e Z2/2,
By induction on p,
(apsaygs B+ 1) = o(Po 4 1, a, - 2P'1b,...,ap_l - 2b) + Lower

terms in lexicographic order. Also since ap +b-3<2b+1,
U(al,...,ap +b - j) is a sum of admissible terms with each leading entry

less than 2Pb + 1. Thus o(a "ap’ b+1) = c(2pb + l,...,ap - b)

1
+ 1 ot %68 LD
) o, o p-1

where o(bo“,...,bg_l) is admissible, b ¥ < 2Pb + 1 and < b + 1. The lemma

follows by induction on b.

TLemma 4.3. Assume that G(bo,...,bp) € L{2t -~ 1) is admissible. If

mt1
b < 2 + 1, then cG(bo,...,bp)Kt £ Ft+2ﬂbp—l < Ft+2m-p_l. If

o]
b =21 4 1 then

m+l _ m m-p+1
co(2 + 1, bl,...,bp)Kt = c(b1 + 2 ,...,bp + 2 )Kt+2m~p

modulo Ft+2m—p_l.
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Proof. If p = 0 then each statement follows immediately from Definition 3.6.
Assume that the lemma is true for sequences of length < p. If

w1

S E % b <2 " + 1, then again by Definition 3.6

CO(bo""’bp)Kt = o(b) CU(bl,---,bp)Kt.

Since the original sequence is admissible, bl i 2" & 1 and the result is
immediate from the induction hypothesis.
Assume that b0 = 2m+1 + 1. Then

m+1 m m
ce(2 + 1, bl,...,bp)Kt = o(bl +2) ec(27 + 1, bz,...,bp)rt

2111
e Z Yj0(2m+l

- +b +1-31) eold, Byseensb .
1

Since j » bl’ the second summand consists of admissible sequences. The

lemma follows immediately by induction.

Corollary 4.4. If o(al,...,ap)wt is an admissible generator of L(U/0) and

p+l r

1 1, then for each r such that Lr Lt~ 1

N

if a1 < 2

_ - : w il
cu(al,...,ap, 2r + 1)Kt_r = gg(al,...,ap)gt mod Ft—l where £ = 1 if r = 2
and £ = 0 otherwise.
Proof. By Lemma 4.2,

= g(zPtL - 9P -
U(al,...,ap, 2r + 1) o(2 r+1, 3, 2 r,...,ap 2r)

+ lower terms. Let i be the least integer such that r < Zi. Thus

2p+1 r+1 572P+i+l + 1 and the result is immediate from Lemma 4.3 with

m=rp+ i,

Lemma 4.5. Assume that ] o(a;, b;) = 0 in L(n). Then for all integers
i

- m+1
m>u>0we have J Zu(ai + 2 -2%5, b, +2°- 2% =,
s=utl =

Proof. In order to take advantage of some classical results, we prove the
analogous theorem for the corresponding Steenrod relations. It can easily
be checked that all computations remain in the image of L(n). We would like

to thank T. Bisson for suggestions regarding this proof.
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m u
Moty . oBgVg ] eSSk PR L YE SO ST
Sq Sq a2 . Sq Bq
2%2b+1-2k
m .,
) 2] 2™ giome2 | §-2%b
= +1 Sq Sq
i 2™ 124
il
. 2™ 28uape1 | 25-2%p4a
= Sq Sq
s=u+1

by Lemma 4.1. Thus we have
m

A= ) sq
s=u+l

2™-2540p+1 | 25 2%t
Sq =0,

i.e. the lemma holds for the relation o(2b + 1, b + 1) = 0.

; r— .
The relatioms for b > i > G, B = E(i) qub dheL sqb Bl o g e known
to generate all relations in 4. (See [M3], [K2]). Thus it suffices to

show that

m 5 mt+l s . s ,u
=2%49h- oY
c= J 7 (t) qu 2742b-i+t+1 qu 27 4b-t+l _ 0.

s=utl t

Let k:a=—»d be the derivation defined by qua = sqa‘1 [K2]. Thus if

q2b+1 qu+l by the Leibnitz formula

8= 0, so is k6. For example, B = k'S
for the derivative of a product. The lemma follows by observing that

C=«'a by using the same Leibnitz formula.

Corollary 4.6. If p > 1 and A = za(blu,...,bpa) = (0, then for any m and u
o

with m — u > p we have

s s
) I 3 U(blu SIS T LT R TR
<s> @ F
where S ranges over sequences (Sl""’sp—l) with m > 81 >"'>5p—l > u.

Proof. For p = 2 this is Lemma 4.5. Since all relations in L, as in &, are
generated by relations of length 2, we may write A as a sum of relations of

the form

C‘O D.'Ci a a e';0 GO
g oby “weswaby e By s Bpags Bisgseesby ) = O,

The result now follows from Lemma 4.5 by fixing El”"’si—l’ Si+l""’sp and
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letting §; vary subject to S;.1 > s; > Siv1-

Lemma 4.7. Assume that U(Zm s R az,...,ap)Kt is admissible 1inp L(2t -~ 1) and

that a, < 2p+1 + 1 and 21_l = kS Zi. Then
m =
co (27 + 1, a2,...,ap, 2r + 1)Kt_r
w(2™ + 1, 3see.,a )k +
g m S1 2 1
7 ¥ 0la, + 27 -2 %, ..,2c+1 42 P-1 _ 2% 7
m>sl>...>sp_l>u 2u—l>r t-r+2"

modulo Ft~1 where ¢ = 1 if r = 2% and £ = 0 if r < 271,

Proof. Since the original sequence is admissible and ap > 2r + 1, we see

that m > p + i, By Lemma 4.2 we may write

(4.8) o(ay,...,a, 2r + 1) = o(aP* 4 Lpvaena,, = 2 0EY
2 P z

) o a
+ Lok .. b
Lage, Iy

where ¢ is ag above and blOt < 2P+1 + 1 for each «o. This is true since if

T < 2%, di.e. if ¢ =0, then 2Fy 4 1 < pPH + 1 and thus appears in the

. Second sum,

5 o a .
Consider the expression Aa = co(2™ + 1, bl ,...,bp )Kt_r. Since

m > p + i, this is admissible and so by Definition 3.6

= F m a . £ o a
A = E fjc(z + 1+ bl ieo(j, b2 ,...,bp Yk

@ 2m—l tex

o
j>
+1>5 bl

If j is not of the form 25 + 1, then co(j, bzq,...,bpa)xt_r =

; a o ; a pti-1
a(j) cc(b2 ,...,bp )Kt—r £ Ft—l by Lemma 4.3 since b2 <2 * il I¥

i=2%4 1, then Yj = 1 by Lemma 4.1 and so

= o m_ s s Q a
Aa E cr(b1 + 2 27)eo(2” + 1, b2 ,,..,bp )Kt_r

2m+l>25+l>bg

mod Ft— By a simple induction argument on p,

1
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a m 81 o S, u u
Ay = ) oo, + 2" =2 T, b @ 4 2 P - 2De0 (@Y 4 D,
M>S, >0 .>5_ >U
1 p-1
mod Ft—l
s s
= 7 o+ 2P-2 b +2P L% ul mod F .
1 P t-r+2 t-1
{8ysu
Thus by Corollary 4.6 and equation (4.8)
m 81 5 u
Ja = J ola,+ 27 -2 ,..,2r+ 14 2w Bk ol
a © ¢S7,u
8 5
~1
g ¥ @™ g Rl - 2 0w P, el
S>,u P t-r+
mod Ft—l' If £ = 0, that is if r < 21, then the proof is complete. Otherwise,

if r= 21, it remains to show that

m pHL ;- _ oitl "
cg(2 +1, 2 + 1,...,ap 2 )Kt_zl
. S 5
(4.9) # ] o142t o2 e =2 P L0y,
{5y,u F t-2-+2"

m
=qg(2 +1, a2""’ap)Kt mod Ft—l'

If m=p + i+ 1, then the first term above vanishes. Moreover the only

sequence (sl,. u) which satisfies the hypothesis for the second sum is

LN
(i + pye-v,i+ 1), If we call &, = u we see that Sp—j =i+ j+ 1 and thusg
u+- S o, S l
_oiti L o3 Ly P35 =1,...,p -1, and so equation (4.9) is valid.
Finally assume that m > i + p + 1. It follows as above (see also Lemma

4.1) that

i+l

co@®+1, 2P 41,8 - 27
P t-2
= 1 (2P 1 2 - e (2® 4 Lyeengm, - gty .
m>s>i+p P t-2
mod Ft~1
L T L T
P 1
t-2
(4.10) )
v 7 @142 - 2% ee® 41,0008 - oitly "
m>s >i+p P t=-2

mod Ft— The first term of (4.10) is equal to

1
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a(2® + 1, a ,ap)Kt mod Ft—l’ i.e. the last expression in (4.9), by

greee
Lemma 4.3. The second expression of (4.10) equals the second expression of

(4.9) by induction.

Corollary 4.11. Assume that o(2™ + 1, az,...,ap)ict € L(U/0) is admissible and

that a, < 2i+‘P +1if r < Zi. Then

m
co(2” + 1, az,...,ap, 2r + l)Kt_r =

(4.12)
b Yj0(ay + 2" - 9 + 1) eoyy, 8gseens2r + Dk
2m_l+l">_j>az
mod Ft—l'

Note that this says that the definition of ¢ extends to a certain class of
nonadmissible sequences modulo Ft—l' Indeed the heart of the proof of

Theorem 3.8 is that this fact is true in general.

Proof. First assume that r < 2%. 1If i# 9% 1, then as in the proof of

Lemma 4.7, and using Lemma 4.3, we see that col], a3,...,2r + l)xt_r =

. P g
U(J)cﬁ(as,...,Zr + l)Kt_l £ Ft—l' If j =2° + 1, then Tj 1 by Lemma 4.1.

Thus the right hand side of equation (4.12) equals

) o(a, + 2" - 2%)co(2® + 1, a
2“14-1>25+1>a2

2T + l)Kt_r mod Ft—

3"' l-

The lemma now follows by expanding both sides using Lemma 4.7.

Now assume that r = 2%, If 3 # 2%+ 1, then by Corollary 4.4,
co(i, 33,...,21+l A o= c(j)c@f(as,...,zl+1 + Dk | =
t-2 g2t

a(i, a3,...,ap)Kt. 1f j = 2% .4 1, then by Lemma 4.7 with ¢ = 1 we get

cG(ES + 1, a ,...,21+1 + Dk = 0(2s +1, a,,...,a )k +
3 t—Zi 3 Pt
s 52 i+1 81 . i
) olag +2° =2 .., 27 w1+ 2P 2% | u1- Thus the right hand
{S7,u t-2142

side of (4.12) is equal to EYjG(az o i+1, 3, a3,...,ap)Kt +

s
I Iota,+2™-25... 20" 14270 gy

P by Lemma 4.7.
s {S)»,u t—-2742

1,
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Since Z yjc(a2 2 i+ 1, )= 0(2m + 1, az), this is precisely the
j>a,

left hand side of (4.12) after expanding it by Lemma 4.7.

5. PROOF OF THEOREM 3.8. The proof of this theorem proceeds by induction on
the length of the sequence I. If that length is 0, we must show that

(ed + dc)Kt =K, mod Ft— By definition, ek, = 0 and

1
t-1 r-1
(5.1) de, = } a(2r + 1) k,___.
‘ pully WAL o
2
Let i be the unique integer such that %-5 2% < t. Then it is easy to see
i
27-1
that 3 = 1 (mod 2) (see Lemma 2.6 [SE]), so that
t-2"-1
de = a(zl+1 + 1)k .+ Z . oy.0(2r + Dk . The result now follows
t i i r t-r
t-2 r#2
»;_iir<t

immediately from Definition 3.6

Now assume that the theorem is true if 2(I) < p and let a = o(a, J)Kt

be admissible where 2(J) = p - 1. To complete the proof we must consider two

cases, each with several subcases.

Case 1. a# 2"+ 1
Clearly dco(a, J)Kt = dc(a)co(.])lct =
o(a) dCU(J)Kt =
a(a)[o(k + ede(1) Ik, mod F_,
by induction. Thus we must show that ch(a)o(J)Kt = g(a) CdU(J)Kt mod Ft-l'

This certainly follows if we can show

(5:2) i6hy; Jy 28 F l)Kt_r = g(a) co(J, 2r + l)Kt_r nod F[:__1

for each r,

M|t

<r < t. Note that if c(a, J, 2r + 1) were admissible, this
would follow from the definition of c. We prove (5.2) first for
a > 2p+1 r + 1 and then for a < 2p+1+1 + 1 where r 5‘21. Since a is not of

the form 2™ + 1, these subcases are exhaustive.
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Subcase 1.1. a > 2p+l r+ 1.
Write o(J, 2r + 1) = Zo{Kj) in admissible form and note that

cla, J, 2r + 1) = Zﬂ(a, Kj) in admissible form by Lemma 4.2. Then

Jeo(a, Kj)Kt_ lo(a) cU(Kj)Kt_r mod Ft"l

r

n

a(a) co(J, 2r + l)act_r mod Ft—l

and we are done.

q 2 2p+1+l

Subcase 1.2. + 1 where r < 7

Since o(a, J) is admissible, Lemma 4.3 implies that each side is equal

to Co(a, J)Kt mod Ft—l where £ = 1 if r = 2° and z=01f r < 2% and again
we are done.
Case 2. a= 2"+ 1.

Write J = (b, K). Then

deo(2™ + 1, b, Kk, =

2%
Z Y.O(ZE +b+1-3) deo(], K)Kt
je=b+l
2™
= ] v,0@" +b+1 - 3)[o(i, Kk, + cdo(i, K)k.] mod F. ..
jubl I t t t-1
2™ -
Recall that | v o(2"+b+1-134, i) =@ +1, b)
j=b+1 J

is an Adem relation. Thus as in Case 1 it suffices to show that
cda(2™ + 1, b, Kk, =
ZYjU(Zm +1+b - j) edo(d, Rk,
or more simply that
m _ m o B ;
(5.3) co(2”+1, b, K, 2r + let_r = ijc(Z +1+b - jleo(d, K, 2r + l)Kt_r

for each r, 5 < r < t. Again this follows immediately from Definition 3.6 if

[T

o(2® + 1, b, K, 2¢ + 1) is aduissible,

Subcase 2.1. b > 2Pr + 1.

Write 0(2" + 1, b, K, 2r + 1) in admissible form Jo@2" + 1, b, K,) and proceed

exactly as in Case 1.1.
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Subcase 2.2. b < 2P 4 1 where r < 2%, This is precisely the case covered

in Corollary 4.11.

If r < 21, then these subcases overlap and Case 2 is finished. Thus we
need just one more special case.
Subcase 2.3. r = Zi and b = 21+P + Lo

By Lemma 4.1, Yj = 1 in equation 5.3 if and only if j = 2% + 1 and

a1 431 < < ™1 41, Thus we nust show

(5.4) o2+ 1L, 2™,k 2Mine | -

-2+
m-1 . " i+1
) o(2™ + 2P 4 1 - 2%)ca(2%41, k, 2 4 1y .
s=i4p+l e-2t

Let o(K) = 0(33,...,ap) and use Lemma 4.2 to write

(5.5) o(k, 2 _ pitD)

P

51, 1) = c(zi+P“1 +1, a; - pitp-2

o
+ é c(b2 ,...,bpa)
where bza g gttty 4 for all o.
Since o(281P 41, 211 4 gy _ g,

co@®+1, 24P 41k, A L e -
t-2%

Jeo@+1, 2P 41, 8%, b O
a Pt

m-1
I Jo@™+1+2M _ 2%c02® 41,
s=itp+l ©

]

a a
2 ,...,bp )3

2%

m-1 " ‘
I oo@®+ 1+ 28 _ 2% [0 + 1, agseean, 270 4+ 1k

s=i4p+l =2t

i+1)K ] .

+eo2® 41, 2™ L1418 =3 )
P t-2%

Here we use Lemma 4.1 to evaluate Yj and also formula (5.5) backwards. Thus
to prove that (5.3) holds, it suffices to show that
m-1

T o™ r+ 2P o 8o 4y, Pl gL )
s=i+p+l p =2

But by Lemma 4.1 again, this sum equals
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y glo® g 4 4 98P o 98 58 4 4 4 2L L 5
id4p-l<u<s<m :
co(2" +1, a, - gitP-2 ' o - 3itly, (=0
P t-2

by Lemma 4.5 applied to the relation o(2'*P + 1, 2Pl 4 1y = 0.
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