A Counterexample to the Transfer Conjecture
by

David Kraines and Thomas Lada

In this paper we discuss the following conjecture, which has been

attributed to D. Quillen, and present a counterexample to it.

Conjecture: If a representable homotopy functor admits a transfer,

then it extends to a cohomology theory.

This conjecture appeared in a preliminary version (circa 1970) of
[S2], at that time entitled "Homotopy everything H spaces."” In that
preprint, G. Segal presented his permutative category approach to the
study of infinite loop spaces. As an application of his methods, he
outlined a supposed proof of this conjecture. However, as work on
transfer and infinite loop spaces continued in the early 1970's, many
doubts were raised about the truth of this conjecture.

If X = QY then X has an associative H space structure and the
functor h( ) = [ ,X] takes wvalues in the category of groups. Conversely
if h( ) = [ ,X] takes values in the category of groups, then X has a
homotopy associative H structure, but is not necessarily of the homotopy

type of a loop space. Stasheff [S4] introduced the notion of A, struc-

k
tures and showed that a connected space X is homotopy associative if
and only if it has an A5 structure, while X has the homotopy type of a
loop space if and only if it has an A structurs.

Assume that there is a sequence {X,} with X, = X, _1- Then we say
that XO is a perfect infinite loop space. 1In this case X has a ¢
algebra structure (Definition 1.1 and Theorem 1.2), and h( ) = [ ]

admits a transfer. Conversely if h{ ) = [ ,X] admits a transfer, then

we say X is a transfer space. In sections 2 and 3 we introduce the
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notion of Qk stiuctures. A connected space X is a transfer space if
and only if it has a Q2 structure while X is equivalent to an infinite
loop space if and only if X has a Q_, structure (Theorems 2.4 and 2.5).
If X = QY then the Eilenberg-Moore spectral sequence arising from
the Milnor construction converges to H*(Y;A) from a functor of the co-
algebra H*(X;A). Stasheff [S4] found a relationship between k cycles
and Ak+l structures and was able to use this to construct an Ak space

with no A structure.

i

If X is a perfect infinite loop space, then Haynes Miller has con-
structed an infinite delooping spectral sequence [M8]. We prove that
k cycles in this spectral sequence correspond to Qk maps and that these “
induce Q. spaces (Theorems 3.3 and 5.2). Thus to construct a counter-
example to the transfer conjecture, we need to find a 2 cycle which is
not a 3 cycle in the Miller spectral sequence.

In an earlier draft we were able to construct a 2 stage Postnikov
system P and a map f: P - K(Z/p,n) which represented a 2 cycle, but
not a 3 cycle. The induced fiber space E turns out to be a 3 stage
Postnikov system such that h( ) = [ ,E] is a counterexample to the
transfer conjecture. The proof required a great deal of ad hoc tech-
nical constructions and proofs.

Recently work of Madsen and Snaith ([MST], [M4]) was brought to
our attention. They show that if Sy is the primitive generator of
H2k(BU;Z(2)), then ZSk is represented by a transfer commuting map,
which we also write ZSk: BU - K{Z(Z),Zk). Furthermore, they showed
that the fiber of 2s7 was not an infinite loop space. Unfortunately,
this fiber was not a transfer space so no counterexample was obtained.

Our techniques apply directly to this type of construction. We
show that the fiber induced by 4sk is a transfer space for all k, but

that the fiber E of 4515 does not have an infinite loop structure.



Thus, [ ,E] does give a counterexample to the transfer conjecture.
The proof of this result is far less technical than our proof fqr the
Postnikov system counterexample.

In section 1 we review infinite loop space theory and Q algebras.
If (X,p) is a Q algebra, then following Beck [B] and May [M6] we con-
struct a simplicial spectrum B(Zw,Q,X)* whose realization gives an
infinite delooping of X. In sections 2 and 3 we introduce Qk struc-
tures and establish its relationship with transfer. In sections 4
and 5 the spectral sequence of the simplicial spectrum of section 1
is constructed and the relationship between its cycles and Q, maps is

proven. In sections 6 and 7 we prove that under suitable conditions

S,t
r

E (X,Z(p)) is a 42/p module for s > 1 and r > 2. This fact allows

us to conclude that 4sk is a Q, map and so its induced fiber E is a
transfer space. In section 8 we prove that although E has a 2 fold
loop sturcture it does not have a 3 fold loop structure. This implies
that h( ) = [ ,E] is a counterexample to the transfer conjecture.

In our constructions we rely heavily on the theory of infinite
loop spaces built up by P. May. The volumes [M6] and [M7] serve as
background references for much of this paper. |

We appreciate the interest and encouragement of J. Stasheff and
P. May. We are grateful to I. Madsen for his discovery of an error
in a previous manuscript. It was in the understanding and correction
of that error that we were led to our present spectral sequence

approach. We feel that the Miller delooping spectral sequence will

have many interesting applications.



§1. Infinite loop spaces and Beck's Theorem

We will work throughout in the category of pointed compactly
generated spaces with H,(X) of finite type. By a representable homo-
topy functor h we mean h(Y) = [Y,X] = based homotopy classes of maps
where X is determined up to weak homotopy type. We say that h extends

k

to a cohomology theory if there is a sequence {hk} with h™ (ZY) natu-

k=1l(y) anda n° naturally equivalent to h.

rally equivalent to h
By an @ spectrum we will mean a sequence of spaces {Xk} which are
connected for k > 0 and such that there are weak homotopy equivalences

QXk = X1 for k > 0. If {Xk} is an Q spectrum, let @ {Xk} = X0 be

the 0th space. If X = Qw{xk} for some & spectrum then we say that X
is an infinite loop space. The following classical result follows

immediately using the adjointness of £ and Q.

Proposition 1.1. The functor h(Y) = [Y,X] extends to a cohomology

theory if and only if X is an infinite loop space.

We say that the Q spectrum {Xk} is perfect if ka = Xk—l for k > 0.

For any space Y let I Y be the perfect Q@ spectrum {QEkY} where

Q = 1lim QNZN. The adjunctions between I and Q induce the adjunctions
—

n: 1 =+ 0 r = Q
and e: 170”° » 1 (see [M5]).

Let p = Q ez Q2 + Q. Then for functorial reasons there are

identities uOn = 1 = unQ and ppQ = pQu. We call (Q,u,n) a monad.

Definition 1.2. If there is a map p: QX » X satisfying pn = lX and
pH = pQp: QZX + X then we say that (X,p) is a Q algebra and that X

has a Q structure.
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A more complete description of these concepts and of the impor-
tant application below can be found in [B] and §2 [M6]. See also

the more general treatment in Chapter VI [M2].

Theorem 1.3. (Beck). If X is a perfect infinite loop space, then X

has a Q structure. If (X,p) is a connected Q algebra, then X is an

infinite loop space.

Proof. Assume {X,} satisfiles 2X, = X, _, and X, = X. Define p: QX » X

N
Q€
. N N, _ N _N_N N N . _
to be the limit of pN' 7 I X0 = Q7 I @ X Q XN = XO. The

verification that (X,ep) is a Q algebra is standard [M6].
Conversely assume that (X,p) is a @ algebra. Define the simpli-

cial @ spectrum B, = B{Zm,Q,X)* by

- 2% A4
B =1I X and
q Q
ez™gd™t if i=0
(1.4) 3; = g Ql-lqu if 0 <i<g and i+ j=qg-1
5= gL, 1F 4 o= g
s, = 5" anQJ for i+ 3j=4gqg.

The realization ||B,|| is the 2 spectrum {X,} with X, defined by

g k g
350 AT x Q 7 QT X/

where ~ is the standard equivalence relation (u,aix) Y (ﬁiu,x) and

(u,six) " (ciu,x). By §12 [M6], this is indeed an Q2 spectrum.

Furthermore if X is connected then the inclusion of X = A° x Q°X into

%} 5% = Qq+lx/m = Xo = QW]|B*|| is a strong deformation retraction by

-

Theorem 9.10 [M6].
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The fact that many infinite loop spaces do not have a (strict) Q
algebra structure has necessitated the introduction of various infinite
loop space machines, such as those by Boardman and Vogt, May and Segal.
Further generalizations by the second author are discussed in the next
segtion. On the other hand, if {Xn} is an Q spectrum, then

{1lim QNXn N} is a perfect Q@ spectrum equivalent to {Xn} up to weak
->

+
homotopy [M5]. Thus we may replace infinite loop spaces by Q algebras

which contain the same homotopy theoretical information.



§2. Transfer and Qk Spaces

We now consider the definition of transfer for a representable
homotopy functor and discuss its relationship with infinite loop space

structures. See also [Ll1l] and [R].

Definition 2.1. We say that the functor h( ) = [_,X] admits a trans-

fer for finite coverings if given a covering p: Y + Y, there is a map

of pointed sets Tp; [?,X] -+ [¥,X] such that

1) 1t is natural with respect to pullbacks

2) 1If id: Y » Y is the identity covering, then Tig = id

x Pa ~
3) Given a composition of coverings Y——2+Y~£L+Y, then Tp °op =
1 2

T o T
P1 P2

4) Given the covering p = id || id:X || X + X, then Tp[id 1L *1 =
[id] = TP{*JL id], where || means disjoint union and * denotes
the constant map X + *, the basepoint of X.

With this definition, one can immediately deduce

Proposition 2.2. If the functor h(_) = [_,X] admits a transfer, then

h takes on values in the category of abelian monoids. [E, pp. 12-13],

[L1 , pp. 54-62], [M4].

Remark: This proposition implies that X is a homotopy associative,

homotopy commutative H space.

A generalization up to homotopy of Q structures on spaces has
been developed by Lada in [L2] and may be summarized by the following

definition and theorem.

Definition 2.3. A space X is a Qk space if there is a family of

homotopies

hq: 19 Qq+lX + X for g < k



such that

~

=% ~a=] : -
hq~lo (1 x 0370 )(tl,...,tj,...,tq,z) 1f_tj~o,

hq(tl,...,tq,z)

_ J ®
and hq(tl,...,tq,z) = h._lo (L x Q hq_j)(tl,...,t

5 ...,tq,z) it tj=l,

jf
and hO on = 1id: X » X.

Note that ho: QX » X 1s a retraction and that the homotopy hl:IXsz + X

requires only that pu be homotopic to pQp where ho = p.

Theorem 2.4. A connected space X is an infinite loop space if and only

if X has a Q_ structure, i.e., a Qk structure for all k.

With the above definitions in hand, we are now able to discuss
the relétionship between transfer and infinite loop space structures.
The following theorem has been proven by a number of authors, [E], [KP],

(L1], [M4], [R].

Theorem 2.5. The functor h(_) = [_,X] admits a transfer if and only

if X is a Q2 space.

For this reason Madsen calls a Q2 space a transfer space. Thus

the transfer cohjecture can be reformulated as follows.

Conjecture” Every Q2 structure on X extends to a Q_ structure.

It is when the conjecture is stated in this form that it appears
unlikely to be true. To find a counterexample, all that one needs is
a space X that is not an infinite loop space and yet possesses a Q2
structure. The remainder of this section is occupied with a sketch
of the main ideas in the proof of Theorem 2.5.

Let Wzn be the normalized Milnor construction for Zn’ the symmetric

group on n symbols. We may regard QX as iL(WZn x X))/~ by the results



of the preprint version of [DL] and [M7, §4]. If [_,X] admits a transfer,

a Q2 structure for X may be defined by the following argument; see [L1l] for
details. Consider the n-fold covering pn:W[n x X0 x F£—+ an x XU where

Py = {l;esu;nly and P, = id on each part of the union. Define maps

n

fn:Wzn x X* x F_ + X by projection of a tuple indexed by i € F_ onto

the ith coordinate in X". One may then carefully choose equivalent

elements of Tp [fn] to serve as building blocks of hO:QX +- X.
n

To construct the homotopy hl:I x Q2X + X, consider the composition

k
I1 Jx iLf 1 x Pj
WzkaZ~ x X X ... xwz_ x X X B i,
J1 Jy 3
7 j o
Wlk x W] X le X ... X WL, X Xjk o k.
31 jk
J 3 k
‘ 1 Tk i=1 1

computes transfer of fj through the compositicn and compares the answer
with the result from applying the naturality property of transfer to

the pullback diagram

Wi, X W), X ... x WP, X x x F, X WZj x X3 x F.

J1 \L I J ‘L J
Wi, * Wl. o< ...ox WL oxx) —T s Wi % X7 ;
here y is induced by a generalized wreath product. The composition
property of transfer will then yield the requisite homotopy.
To see that a Q2 structure implies the existence of a transfer

map, we sketch Kahn and Priddy's approach. Let p:Y - Y be an n-fold
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covering and P(Y) the associated principal zn covering. One then com-
poses the obvious map Y + P(Y) x Z ¥ with the classifying map

n

P(Y) - WZn to obtain a map p:Y -+ WEn X ) g2
n

. If £:¥ ~ X is a map,

the transfer of f may be represented by the composition

n
Y—-*W’Zn x E ?n }LE_

h
s ul, xop 22
‘T n

where ho is the Dyer Lashof map induced by hO:QX + X [DL]. Properties

1, 2 and 4 of transfer may be readily deduced from this construction.
To verify the composition property, property 3, let q:§ + Y be an m-

fold covering. One then shows that p o g is the compostion

p

- o
Y———-a-WEnX L #

) ¢ 22 a W) GO ) and that
n n m

Wy > Zn(WZm " me)n B W(Znﬁm) g Znﬁmg%Hm

( ;
where Zn)fm C zmn is t@e wreath product.
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§3. Qk maps induce Qk spaces

Assume that (X,p) and (K,¢) are Q algebras. If f£f:X - K commutes
with the algebra structure, i.e. if ¢Qf = £p:Q0X + K, then it is easy
to see that f extends to a map of simplicial spectra f*:B(zm,Q,X)* -
B(EW,Q,K)*, and thus to their realizations. In this case f is a
stable, or infinite loop map. Also in this case it is easy to verify

that the fiber in B st X sbes K 4o & Q algebra.

Definition 3.1. A map f£:(X,p) - (K,¢) between Q algebras is called a

Qk map if there is a collection of maps

fq:aq x 09x -+ X for g <k

-~

with fO = £ and satisfying

0QF (g0 tg,2) if t =0
o i-1 3 ; .
= F = =cr=-
fq(to,...,tq,z) *q—l(to""’ti""’tq'Q uQ-z) if ti 0, i+j=q
g-1 : o
l qu-__%(t(?,...,tq_lpg QZ) \lf tq—o

uod 0t %% » o logIx.

If £ is a Qk map for all k, then we say that f is a strong homo-

where Ql_

topy Q (or shQ) map. Such maps can be lifted to infinite loop maps
(L2]. If £ is a Ql map, then we only require that ¢Qf = £fp. Such
maps have been called transfer commuting maps [MST], [M4]. We will be

most interested in Q2 maps in this paper.

I (=)
Let ¥y = L GO, 9%/~ be a filtration of ||B,|]|. Let K be
— g =k
an Q spectrum and let (K,¢) be the Q0 algebra constructed in Theorem
1.3. By a map G:Fk + K we mean a sequence of compositions for g < k
g 1 T g
29« 79— 1 (09 «x o9x)—<S- K where gq is a map of spectra satisfying

the coherence relations induced by (1.4).
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o

The adjoint of g :I (49 x qu)——+§ is the map fq given by the
g

o 279, w
composition 49 x @3x —» 2”t” (A% x ¥x)—H9"K = XK. The compatibility
conditions of (1.4) for gq translate to the compatibility relations
(3.1) which imply that £ is a Qk map. Conversely if f£:(X,p)—>(XK,9)

is a Q. map, then we may construct a map G:Fk + K by defining gq to

be the composition

) Equm o o o
r (89 x ¥x)—"1"K = 172 Kk— K.

Compare Chapter IV [M2]. Thus we have proven the following.

Theorem 3.2. A map f£:(X,p)—(X,9) is a Qk map if and only if there

is a map G:F — K such that f is the adjoint of gO:sz——+§.

The Qk spaces and maps are, of course, analogues of Stasheff's

higher homotopy associative (Ak) spaces and maps. We now prove the

analogue of his Theorem 6.1 [S4].

Theorem 3.3. Let f£:(X,p) = (K,¢) be a Qk map between connected Q
algebras. Let E be the fiber space over X induced by f from the path

loop fibration over K. Then E is a Q, Space.

Proof: The Qk structure on a space E involves maps 19 x Qq+lE + E.
It will be helpful in the proof if we translate the definition of Qk
maps from the simplicial to the cubical theory. Indeed one can check

that £ is a Qk map if there are maps fq:Iq X QqX +~ K such that fo=f and
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Q!)qu_l(tz,r---’tq;z) lf tl=0
£ (t b 23 = & B - (B gaws by pesnk ot lugdz) if t.=0, i+j=g
q lr"'f qr q-]. ll r l, r qf i r
i-1 3 o
fi-l(tl'...'t‘i"'l'Q p-z) if ti—l, i+3=q

i ' i
where p~ = pQp ... Q p.

We present the details of the proof of this theorem only for the
case when k=2 as that is all that is required in subsequent sections.

The existence of a Q, structure on f implies that we have homotopies

f.:I x QX - K and £ :I2 X Q2X - K

i 2

such that £,(0,z) = $Qf(z), fl(l,z) = fp(z), fz(O,t,z) = ¢Qfl(t,z),

l(

£,(t,0,2) = fl(t,uz), £,(1,t,2) = foQe(z), £,(t,1,2) = £,(t,002).

We regard E C X x PK to be defined by {(x,1)|£f(x) A(l)}. Note

that by [M6, p. 6] we have pPK:QPK + PK defined by pPK(z,Al,...,kn)(s) =
pK(z,Al(s),...,An(s)) where (z,Ay,...,2) € Wzn x (PK)™.

The Q structure map for E, pE:QE +~ E, may now be defined by

QE(erlrllr--orxnr An) =

(p(z,xl,---,xn), oPK(z,Alr---.hn)(-) + £ 0z, x )

To see that the path addition in the definition is well defined, note

that pPK(z,Al,...,ln)(l) = ¢(z,kl(l),...,kn(l)) = ¢(z,f(xl),...,f(xn)) =
¢Qf(z,xl,...,xn) = fl(O,z,xl,...,xn). The remaining step is to verify

that o (z,xl,kl,...,xn,kn) € E. We have[pPK(z,Al,...,An) +

E
fl(z,xl,...,xn)ul) = fl{l,z,xl,...,xn) = f o p(z,xl,...,xn) and we are

done.
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At this point we have shown that a Q, structure on f yields a
Q1 structure on E. It will be useful to observe that the second co-

ordinate of p

g may be described by

Ppg (2t) t = 1

g(E)
£4 (2¢=1) t > 1/2

We now turn our attention to the Q2 structure on E. A point in

QZE lies in some subspace of the form Wzk X (%} Wzn X En/%)k. Denote

such a point by (w,zl,...,zk,ia PA e pX

,»_ ) where Ea and A

1 @l ak ak ] 0.'.j
j=1
are ij tuples indexed by the integers | i, + Sy £=l,...,ij and the
n=1
pth component of each X and A satisfy £(x_)_ = (A ) _(1). We
o B a.'p 8.’ p
| ] J J
also have Zj € Wzi . Let us now define pé:l X Q2E -~ E by
P
p%(tzrwrzlr---rzkrza I-TO.‘ f"-rgq rTa )(tl) = (p}];(w!zlr---rzkr
i 31 k k
E r---r-}_{ ):9’ (tirty/W,27,00.,2 rE JrT r---;}_(- r—;\- ))
oq oy 14712 1 k @y o "y
where :
L -—-—4tl 0 <« £, = 2_t2
PPKR 2-t, - "1 =12
2-t
g+ (.t ) = - 2 2 }_
1 1 2 pPK o] Qfl(4tl (2 t2)) 4 i tl i 2-
£ (2t,-1,t,) Y
2 1 £=9 1 -2

We regard the first wordinate, tl’ as the path parameter. The

following diagram should clarify the construction of gq-
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7

Note that it is easy to see that the image of oé lies in E. To

1
see that DE

the compatibility requirements set out in Definition 2.3. We need

does indeed define a Q2 structure for E, we have to verify

only check the second coordinate of Dl

gr 9pr. @S compatibility is

obviously satisfied in the first.

Suppose t2 = 0. Then
1 1
pPK(Ztl) 0 = tl = 5
9y (t,0) = { oo 0 OF, (4€,-1) t, = 2
1
f2(2tl-l,0) tl > 5
B © B2 ) 0 < £. < *
PK il =% 23
B 1
£,(2t,-1) o u F<ty <1
1
=g o u. Thus o] = p, o u
E 0 E
Now let t2 = 1. Then
1 1
g, (t,,1) = { p__ o QFf. (4t,-1) =g g g
1 M=1* PK 1 1 4 — 71 =2
1
£, 2% <171 t, > %

= (p%K + Ppg © Qfl) + fl o pr. A straightforward calculation shows

that this path is indeed the second coordinate of Py © QpE.



16

Remark: In general assume that fq:Iq x 09% + R, q < k is a Q, map.

It is possible to define a Qk structure on E, p%:lq X Qq+lE + E by
q _ q
= (pxygq) where
7 A j+1
1 3 (2% - 1 (2-¢y)
Ppr 9 Eq-541 ;’2 42 tqa
I (2=t,)
i=2 *
\ 541 3
| 1 (2—ti) I (2—ti)
_ e 1=2 ; i=2
gq(tl""’tq+l) = if 2j+l =t 2 zj
q+l
f 2q+ltl i£2 ( 2-t.)
/ pgK g+l s tl 2q+l
i=2
1 0
We let 3=0,1,...,9 and define. 1 (2—tj) =1 = 1 (2—ti). The verifica-
i=2 i=2

tion of the coherence formulas is quite tedious and in the interests of

good taste will be omitted.
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§4, Stable homology and the delooping spectral sequence
Let h, be a connected homology theory, i.e., hq(X) = 0 for
g < 0. IfX= (X} is an @ spectrum, then we define the stable

homology by

S v s
hq(E) = lim hq+k(xk)
= hq+k(xk) for k > qg.
If (X,p) is a Q algebra, then we define hg(x,p) = hZ(I{B*||).

Proposition 4.1. For a connected space X there is a suspension isomorphism
zh (X) % h_°(:"x).
q d

Proof: Note that n: X - 0z®X is a 2n-1 equivalence. Thus

S,.» _ n
hq(z X) = hq+n(Q2 X) for n > gq

— n —
= hq+n(z X) = hq(X).

In an analogous way we may define the stable cohomology functor

*
hg. The usual duality and universal coefficient theorems hold.

Example 4.2. Let hq( ) = Hq( ;Z2/p). If X is connected, then

Hq(QX;:yp) = A T H,(X;Z/p), the free commutative algebra on the free

admissible Dyer Lashof module on H,(X,Z2/p) (see p. 42. [M7] and [DL]).

Hi(z“x;z/p)

1S (0X;2/p)

B, %08/ .

Example 4.3. Let K(Z/p) be the perfect & spectrum {K(Z/p,n)}. Then

*+ﬂ

H;(E(Z/p),z/p) = lim H (K(Z2/p,n) ,2/p) ~ A(p), the mod p Steenrod

algebra.



18

On the other hand Hq(K(Z/p,O);Z/p) = 2/pl2/p] 1if g=0 and 0 otherwise.

Example 4.4. Let bu = {BU[2n,...,=]} be the ¢ spectrum for connected

K theory. Then H*(BU;Z/2) = Z/2[cl,c2,...] where Cx is the Chern

*
class of degree 2k. Adams [Al] [AP] has computed that Hs(bu;z/Z) =
22‘4/A(Sql,8q3). Results on the localized unstable and stable theories

[BU(P)'BU(P)] and [bu(pl'bu(plj have been obtained in [MST].

Let Y, be a simplicial space and let 3 C Yq generically denote

the subspace of degeneracies 3 = U Im Si(Ya—l)' We will assume that
i 1

the inclusion is a cofibration. For a homology theory h,, there is
an associated spectral sequence with Eslt = hs(Yt,a) which converges
r

to h,(||¥,]|) [SL]. This construction can be generalized to simplicial

spectra.

Theorem 4.5. Let (X,o) be a Q algebra and h, a connective homology

theory. Then there is a first gquadrant spectral sequence with

Eﬁlt = Eslt(x'h*) < ht(QSX,B) which converges to h§(||B*ll) = hS(X,p).
= !

s ,
Moreover the differential al is induced by I (-l)lEi* where

i=1

1

z: 0°% » 0°7*X is given by

Q™" uo’ for 1 < i < g, i+j = s-1
Q P . for i=s.
Proof: Recall from section 3 that F_ = 1l 22 x5%09%/n is a fil-

qg =S8

. Thus there is an exact couple

tration of ||B,|
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S i S
h*(FS 1) PSS, ... W ; o (FS)

(4.6) \\\\\\ k//’

h (F F
; " ; 1 _ S
with an associlated spectral sequence having Es,t = hs+t(§s’gs-l) and
converging to hE((IB*II). Moreover
(F.,F__,) =lim h (—LL_ 29 x orf%0%, )

s+t =s'=s-1 s+t+tn'g < s

h_, (—_ a9 « g%, )

stt'qg < s
= h,(Q%%,9).
(compare [S1l] and [M1]).

The differential dl: hsit(Es’Es—l) > s+t(Es 1B 5) 1s induced
from the alternating sum of the maps Bi: EmQSX - ZmQS_lX defined in
(1.4). If i > 0 then 3, = 57¢,. If i=0 then 5, = ex 0% ': 170%k »
1"0571x% can be seen to induce the 0 map on hE(ZmQSX)/(nQS—l)*hE(Zsz"lX),
and thus on Es%t = S+t(F 'Fs l) ® ht(QSX,a) (compare p. 110-112 [M6]).
Thus there 1is no . g needed in the formula.

We will write Esft(x,ﬂ) for Esft(x,H*( iA)). For A = 2/p we
note that dl: E 1 - E & corresponds to p,: H_( QX,nX;Z/p) > H _(X;Z2/p) .

t,1 t,o * t t

An element on the left is a formal polynomial in formal Dyer Lashof
operations on classes of H,(X;Z/p). The differential is evaluation.
For example if x,y € Hl(X;Z/Z) and sz € H3(X;Z/2); then

-i__1i 2 2 .
al (@3 1xy1-0%10%21) = (203 7txoly) (0%%2) = (x%0%y + 0*xy?) 0%z using

the Cartan formula, unstability and the Adem relation QGQ2 = QSQ3
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t

i *
The cohomology spectral sequence Esi (X,h ) = ht(QSX,a) con-

*
verges to hS(X). This is related to the homology spectral sequence by
the usual duality theorem and the universal coefficient theorems if
* *
h =H ( ;4). .
The existence of such a spectral sequence was noted by P. May
([M6], p. 155) and D. W. Anderson [A2]. Using completely different

methods, Haynes Miller defined a delooping spectral sequence and com-

2
puted Es,t

seéquence in certain cases and give some applications. We had discovered

(X;2/2) [M8]. Miller was able to compute the spectral

this spectral sequence independently after realizing that a

certain computation was a d3 in some spectral sequence and then iden-
tifving the spectral sequence.

In a forthcoming péper we will show that the spectral sequences
above are equivalent. We will also describe EZ(X;Z/p) and do a number
of computations. We expect that there will be many applications of
this spectral sequence to infinite loop space theory and stable

homology theory.
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§5. Cycles and Qk maps

Let X be a Q algebra. The Eilenberg Moore spectral segquence has

*

*
E,’ equal to a functor of H (X;A) as a A coalgebra and converges to

¥ N ¥

H (BX;A)., If x € Ht(X;A) is represented by a map £: X -+ K(A,t), then

f is a loop map, i.e., £ = Qg for g: BX + K(4,t+1l), if and only if x
*
is an infinite cycle, i.e., it represents a class in H (BX;A). More-

over, X is a 4, cycle if and only if f is an A, map [S4].
. k k

Similarly, £ is an infinite loop map if and only if x is an
infinite cycle in the Miller delooping spectral sequence. For in that
case, X survives to a stable class y € H;{X;A). We prove that x 1is a

d, cycle if and only if f is a Q, map.

Ot

Theorem 5.1. Let x € ht(X) = [X,K = E i be represented by a map

t]
£: X + Kt' Then £ is a Qk map if and only if x is a k-cycle.

Proof: The class x is a k-cycle if and only if there is a class

S

*
X, € h;(Fk) such that (ik) x, =x & ht(FO) = ht(X) (see 4.6 and Ch.
XI [M1]). Thus x is a k cycle if and only if there is a map

Gp: Fy > Kt such that ikag is adjoint to f. This means that f is a

Qk map by Theorem 3.2.

Corollary 5.2. Let f: X ~» Kt be a map between Q algebras. Then f is

homotopic to an infinite loop map if and only if [f] € E%ft = [X,Kt]

t

is an infinite cycle. Furthermore [f] survives to E° if and only

’
2
if £ is transfer commuting, i.e. a Q) map.
If X is an infinite loop space then the Eilenberg Moore spectral
* % *
sequence E é ==> H (BX) is in the category of abelian Hopf algebras.
This implies that if dr(x) # 0 then r = pk+l-l or 2pk-l (compare

Theorem 2.4 [K]). It can be shown that if dr(x) # 0 for r as above
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in the Eilenberg Moore spectral sequence, then dk(x) # 0 in the Miller
spectral sequence. Thus if there is an obstruction to f: X » K(Z/p,n)
being an Apk map, there is also an obstruction to f being a Q, map.

In Theorem A [MST] it was shown that every transfer commuting

endomorphism of BSO was homotopic to a'stable, i.e., infinite loop,

map. This result implies that Eoét = Eoét in the spectral sequence
converging to [bso(Pl,bso(PIJ.
Assume now that [f] € ht(X) = IX,Kt] is a 2 cycle and let

E By X —£+ Kt be the induced fibration. Then by Theorems 3.3 and

2.5, E is a transfer space. Thus to construct a transfer counter-
example, we need to be able to compute differentials in the spectral
sequence.

Let X be the stable 2 stage Postnikov system with k invariant

2
pP TipPhph, . K(Z/p,2n+1l) -+ K(Z/p,2n93+l) for n Z -1(p). Using tech-

niques developed in [K], we can show that there is a class

3
H2{n+l)p -2(X;Z/p) which does indeed represent a 2 cycle but not

=
a 3 cycle. Moreover an elementary Postnikov system argument proves
that the fiber induced by ¢ is not an infinite loop space. Indeed vy
is the p3 transpotence of the fundamental class of BX. Thus this

fiber is a counterexample to the transfer conjecture.

Unfortunately, the proof of this fact requires a fairly complete

description of Eszt(x) and Esm (X). Results of Madsen and Snaith [M4]

' s

concerning the transfer conjecture were recently brought to our atten-
tion. We extend their results to find a more "real life" counterexample.

To establish this counterexample we need much less information about

the E2 term and no explicit knowledge of E*. Instead we need p torsion

r
results on Es,t(X’Z(

p))*
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§6. Partial computation of E2

Assume that X is a connected Q algebra of finite type. Since X
is an infinite loop space, H,(X;Z/p) is an abelian Hopf algebra.
Borel's theorem implies that H*(X;Z/ﬁ) is a free commutative algebra
modulo relations of the form yPk. To simplify the following arguments
we will make the strong assumption that H,(X;Z/p) is the free algebra-
on a Z/p module M with basis {yj}. The examples we use to construct

the counterexample are X = BU and X = BSU, which satisfy this hypothesis.

Definition 6.1. For a graded connected Z/p module N with basis {xj},

let AN be the underlying module of the free commutative Z/p algebra on
N. Let TN denote the Z/p module with basis QIxj, where QI is an

admissible Dyer Lashof operation of excess greater than the degree of Xj'

Theorem 6.2. If H, (X;Z/p) is the free commutative algebra on a module

M, then

(AT) °AM

]

H, (Q°%;2/p)

ATA...TAM.

I

Proof: This follows easily from p. 42 [M7].

Thus Ht(QSX;Z/p) is generated by monomials in Dyer Lashof operations
on monomials in Dyer Lashof operations on ... monomials in basis elements
B P

{xj} of M ¥ QH,(X;Z/p). For u € Ht(Q X;2/p) we write 1l(u) = Q

£or o, l0) in Ht(QSX;Z/p}.

Example 6.3. o = QG{Qz(x)l(y)}Q7Q4{Ql(z)} is an element of H23(Q2X;Z/2)

where x,v¥,2 € Hl(X;Z/Z).

The Eé - term of the Miller spectral sequence is the guotient of
r 5
(AT)SAM & H*(QSX;Z/p) by the image of the degeneracies Si:QS-lX -~ 0°x
s
of (1.4). The differential of Theorem 4.5 extends to d = ] (-1)7d,:

i
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(AT) °AM ~(aT)5"1aM for s > 0. Note that themap d_ is given by the
composite
-1
z g b
S S = 8 * S .. .s=1 s-1
H (Q7X) ~H_ (2Q°X) ~HL(E Q7 "X) .+ H (Q7 "X).

*
Thus (AT) AM is the unnormalized version of Ei + and so the two are
r

chain equivalent.
*
The complex (AT) AM is much too large and complicated to use
*
effectively. Consider the subcomplex T M = {T5M}. We may write a
Ill

generator of T°M as Q Y s|x where x is a generator of M and Ij is

an admissible sequence of excess greater than deng+l+...+degIS + dim x.
I
The face map dj removes the jth bar. If i = 0 we get 0 unless Q L. Qg =1

*
in which case the first term is omitted. Thus T M 1s an unstable

unnormalized bar construction for the R module M ¥ QH, (X;Z/p).

* *
Theorem 6.4. The inclusion of the subcomplex T M into (AT) AM is a

chain eguivalence.

Proof. Our method is to successively contract out the algebra structure

of (AT)SAM. First define a filtration of

* S.., v .S S S S s ,
< C C C =
(AT) AM, T™M ~ FO Fl - FS Fs+l (AT) "AM, by setting

S..—
Fk = Im[(AT)
(AT)l-l

KpS=Ky  s(aT)SaM] for 0 <k < s. Recall that d; =

1 (AT) 5™ where u:ATAT —AT is evaluation. Thus d, (F i:i

; : s s-1 . :
if 1 < k and di(Fk) C Fk iE 1 & K.

* *
We will show that the gquotient complex Fk/Fk—l is acyclic for k > 1.

5 *
Thus Fk—l_dﬁFk is a chain equivalence and the theorem follows by

iteration. Alternatively the filtration gives rise to a spectral

* * *
sequence converging to H,((AT) AM). We show that EE & Ay H*(Ft’Ft-l) =0
4
* )
for t # 0 and thus H, (T°M) % B2 = E % H, ((AT) AM).

*,0 *;0
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By Definition 6.1. AN is the module with generators of the form

Xy oeee X where the x.'s are generators of N. Also there are generators

i
l(xi) = Qﬂ(xi) in ™. Define a homomorphism c:AN —ATN by c(xl...xn)
= l(xl) i l(xn). Letting N = Ts-k+lM we have an extension
= k=1 _s__ oS+l
Cp = (AT) C:Fy—F
for k > 0. Since u(l(xl) . l{xn)) = Ry .- Xy dkck(xl cee X ) = XX
— 3 3 1 : S+l S+l .
M reover d,c, = cpdj_q if i > k. Since 4, (F ™) C F 5 for i < k, ¢y
extends to a homcmorphism
t .@S /S sl 8l
cliF /T /T
. . x* %
such that de' - ¢'d = 1. Thus c¢' is a contradiction and so Fk/Fk_l
is acyclic for k > 0 as required.
In an attempt to make the formula dc' - c¢'d = 1 more compre-

hensible, we carry out the necessary computations for the element

a € Im(ATATM) = Fg of Example 6.3.
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6 1

(05 %% (x) 0% (y)) (@70% 1t (2))

58 = ¢
0

(Here we use the Cartan formula, excess, and

the Adem relations Q7Q4Ql = Q7Q3Q2 = 0.)

22.)

= QG{(Q2X)(y)}Q7Q4{22} (Here we use le

ol
Q
|

cla)= %1110 (x)1111(y) 1} o’o*t11ot (2) 1}

doc(m) =0

ayele) = (0% F 1?10ty 1) 't et € ]
d,c(a) = a

dye (@) = o®t1ro®x11iyl} o’ott11z®1} = c(a0).

A standard argument will show that T°M is chain equivalent to T°M
where TM = TM/(1M) is the normalized version. Thus a generator of M
may be written QIl|... QIs|xj where x, is a generator of M, I is
admissible and nontrivial (Ij # @), and excess of Ij is greater than
the degree of QIj+l...QIij. This theorem implies that Es%t is chain
equivalent to T°M. In order to form Es?t we must still take into

account the Adem relations.
Miller [M8] started with essentially the complex 5M. He described
Eszt as an unstable Tor functor on the Dyer Lashof algebra and computed
r

Eszt(X,Z/Z) when the Dyer'Lashof action on H_(X;Z/2) is trivial. Thus
4

the Miller spectral sequence is analogous to an unstable Adams spectral

sequence.
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Remark 6.5. If H,(X;Z/p) is not a free algebra, but instead there are

k+1
relations yp = 0 for dim y=2n, then we must add the generators
Il Is—l k : k pkn pn_n
Q ]Qo|y to the above collection where Q_ = Q o o G

Q

This situation will be fully discussed in our forthcoming paper.
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; . r
§7. p torsion 1n ES £

r

If X is an infinite loop space, then it is possible to define

homology Pontrjagin-Thomas pth power operations
A 5 k-1 . k
Jo s Hy (X32/p0 ) > Hpn (Xi2/pT) > (31, (M7D)
Let By be the Bockstein operator associated with
0+~ Z2/p ~ Z/pk+l T4 Z/pk + 0. Then

p

1

a) ryRE) X
(7.1) b) Bkﬁp(x) = xp—lﬁk_lx ifp>2o0rk>1

XpxX + ansx if p = 2 and k = 1.

If all of the higher p torsion of X arises from Pontrjagin prod-

ucts, then X is called Henselian. More precisely let ék be the
k
Bockstein operator associated with 0 - Z(P) - - Y Z(p) = Z/pk + 0.

Note that rg, = if r is the reduction 2 + Z/p. Then X is Hen-
k (p)

By
selian if the pk torsion of H*(X;Z(p)} for k > 1 is generated by
elements of the form Bkjb..;??(x) for x € H,(X;Z/p) (compare defini-

tion 1.7 [M3]).

Theorem 7.2. If H,(X;Z

)) has no p2 torsion, then QX is Henselian

(p
at p.

Proof: See p. 63 [M7].

Note that if OX is Henselian, then the mod p reduction of higher
torsion is decomposable, unless p=2 and k=2. Since Elz*(X;Z(p)) is a

subquotient of H*(QX;Z(p)) in which decomposables have been contracted

out, by Theorem 6.4, we may expect that there is no higher torsion in

that group. Indeed more is true.
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Theorem 7.3. Assume that H,(X;Z/p) is a polynomial algebra and that

r . S,t 2
’t(x,z(p)) and E # (X,Z(p)

)

H*(X;Z(p)) contains no p2 torsion. Then E_

are Z/p modules for r > 2 and s > 1.

Proof: By the universal coefficient theorem and the fact that the

homology of a Z/p module is a Z/p module, it suffices to prove that

E52t is a Zz/p module for s > 1. From the Bockstein spectral sequence
r

for H,(QX) (p. 48 [M7]), the infinite factors of H*(QX;Z(p)) are in
the image of n: X - QX or arise from formal products of generators of
infinite factors of H*(X;Z(p)) such as 1(x)1l(y). But such elements

s-1

are either in the image of the degeneracies anQj: Q X - QSX or they

are decomposables. Moreover if there were an infinite factor in

E % (x

s & ), then it would reduce non trivially to Eszt(X;Z/p).
r r

;Z(p)

Since Eszt(X;Z/p) is the homology of T M, in which degeneracies and
I

decomposables are divided out, there is a contradiction.

2

X; 2
(X3

Similarly if z € ES ) generated a pk Lagtor fur k = 2,

(p)
then it must be degenerate or cof the form Bkjﬁ(y). Ifp>2o0r k > 2
then by (7.1), z is represented by a degenerate or a decomposable in

E2(X;Z/p) and so we reach a contradiction again. Finally if p=2 and

2

’t(X:Z/Z).

k=2, then the 4 torsion element is represented by ansx in ES

But this element is in the dl image of an[SX] modulo terms of lower

filtration. Thus anBx cannot represent a nonzero element in

Eszt(X;Z/Z), and the proof is complete.
I

Note that while Esét(x;z(p)) is a Z/p module for s > 0, the edge
homomorphism
o,t t,.
E z - H (X'Z{p))

is a monomorphism. Thus the edge term will often have infinite factors.
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Corollary 7.4. Assume that H,(X;Z/p) is a polynomial algebra and that

H,(X;Z ) has no p2 torsion. Let c € Eo't(X;Z ). Then prc is an
(p) 2 (p)

r+l cycle for all r » l.

Proof: Assume that pr_lc is an r cycle and that dr+l(pr_lc) = vy.

Then dr+l(prc) = py = O.
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§8. The counterexample
*
In this section all spaces will be localized at 2 and H ( ) will
mean Hﬁ ;2(2)). We will write a class ¢ € g? (X) and a representing

map ¢: X K(Z(z),n) interchangeably.

Recall that H,(BU) = Z(Z)[al,az,...] as algebras [L3] and so the
*
hypotheses of Corollary 7.4 are satisfied. Also H (BU) * Z(2)[C1'c2""]

as algebras where Cq is the Chern class of dimension 2k. Let

k

s, € PH2 (BU) = Z( be the primitive class dual to 3 in the basis of

k 2)
monomials. We may eXpress Sk as the Newton polynomial kck + decom-

posables (Chapter IV [L.3]) .

Theorem 8.1. For each k, 4S5

x* BU ~+ K(Z(z),Zk) is a Q2 map and 1ts

induced homotopy fiber E, is a transfer space.

Proof: Madsen [M4] has shown that 2Sk is a transfer commuting or Ql

map. By Corollary 5.2 EZSk} represents a nonzero class in EOEZK. By

Corollary 7.4, the class 4Sk is a d2 cycle and so by Theorem 5.1, the
map 45, is a Q, map. Finally, Theorem 3.3 implies that E, is a Q, or
transfer space.

In summary, [ ,Ek} is a representable homotopy functor which admits
a transfer. Let a(k) be the number of 1's in the diadic expansion of
k. It follows from work of Adams [Al] (see also [M4]) that 2nSk is a
stable class if and only if n > a(k)-1. If a(k) < 3 then

4S BU ~ K(Z(z),Zk) may be taken to be an infinite loop map and so

k:

[ 'Ek] extends to a cohomology theory. However if a(k) > 4, we then

will get a counterexample to the transfer conjecture.

Theorem 8.2. The fiber E = El5 of 4815 has a Q2 structure which does

not extend to a Q_ structure. Thus [ ,E] is a counterexample to the

transfer conjecture.
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By Proposition 2.2, the Q, structure on E determines its H struc-
ture. Thus it suffices to show that there is no infinite loop space
which is H equivalent to E. In fact, we will show that there is no H
space F such that H*(QzF) = H,(E) as algebras.

We first outline the proof. Assume to the contrary that such an
F existed. Then we will show that a Postnikov approximétion of F
fibers over a Postnikov approximation of BSU. Moreover, it will be
induced by a map t: BSU - K(Z(z),32) with 921 = 4815. However, if

t16 is the generator of QH32(BSU), then we will show that 1 = 4t

16
modulo decomposables whereas PH32(BSU) is generated by 8t16 modulo
decomposables. This will imply that = cannot be chosen to be primitive

and that F will not in fact have an H structure.

We first record some classical facts about BSU.

2k+2

*
lemma 8.3. H (BSU) = Z(z)[tz't3""] as algebras. If GZ:QH (BSU) -~

PH2k(BU) is the 2-fold loop suspension followed by the identification

QzBSU = BU, then GZtk+l = Sk‘ Finally PH32(BSU) is generated by a

class y which equals 8tl6 modulo decomposables.

Proof: These results can be found in the literature (e.g. (L3], [S83]).

The first is classical. The second follows from the collapse of the

* %
] - 1 = ==
Eilenberg-Moore spectral sequences lE2 TorH*(BSU) (2(2)’Z(2)} >

a* (gBSU) = H (SU) and 2E;* = Torge gp) B2y E(2)) = g* (gsu) = H*(BU).

To see the last result recall [L3] that the Newton polynomial

Si6 = 16c16 + 2D + 2cg e ciG generates PH32(BU) for D a decomposable.
If we replace C by t, for k > 1 and 0 for k = 1 in the above poly-
nomial, then we get a primitive 2y = 16t16 + ... F 2tg in H32(BSU).

32

But y is primitive and not divisible by 2 and so generates PH™“ (BSU) .
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For a simply connected H space X, there is a Postnikov decomposi-

tion X + .. > X0 s Xn—l + ... + X, = *,_ In particular

1
m: X > =1 ig a principle fibration induced by an H map

k™ Xn-l - K(nn(X),n+l). We will assume knowledge of the Postnikov

systems for BU and BSU (see §2 [AP]).

ILemma 8.4. Assume that F is an H space such that H*(nzF) = H*(E) as

BSUn for n < 32.

Hopf algebras. Then o

Proof: Note that m (F) ~ wk_z(E) = wk_z(BU) = wk(BSU) for k < 32.

Thus F4 = F5 = K(Z(z),4). Also F6 = F7 is the 2-stage Postnikov
system with k invariant k: K(Z(z),4) - K(Z(Z),T). But

7 . B A & x
. 5 1 h r
H (K(z(2)14),z(2)) Z(E) is generated by 83q ', ¥ ere B is the Bock

stein associated with 0 - Z(Z) - Z(2) +~ 2/2 = 0.

Thus the k invariant for Fo is VESqZ1 for v € 2, and soO the k

invariant for QFG is v(13)2. Moreover the k invariant for 92F6 = E4

is 0 and so QZFG = K(Z(z),Z) X K(Z(z),4). The H structure on QZFG

depends on v. More precisely

By = 14() 1+ v, @)12) + 1 C)14.

x
Since Ac, = C, ®@ 1 + Cl,@)cl + 1.C?c2 in H (BU) and so in H*(E4), we

may assume that v = 1. Since the first k invariant for BSU is éSq21

([aP], [83]), we have F6 = BSUG.
Inductively assume that plh=2 - el 3su?™™ L for 2n < 32.
Then the k invariant k2n for an is in PH2n+l(BSU2n_l). It is not

hard to compute that this group is 2(2) and is generated by a class

x with j*x = équtzn_z = H2n+l(K(Z(2),2n-2),Z(2)). Since'oz(kzn) is
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the k invariant for E?‘n"2 = BUzn—Z, knowledge of the k invariants for

BU and BSU implies that L
Using these results it follows that F32 appears in the following

diagram of induced fibratiomns.

F32

j 32 T
K(Z 5y r32) -1, BsU ) K(Z 5y r32)

30

: k
K(Z 530 L, BsU®® = R(Z45y/33)

where j denotes the fiber inclusion, j*(k) = équx and o2 (1) = 48,5-

This is no longer a Postnikov tower since dim k > dim 1. Let A

be determined by j*(r) = a1 € H32(K(Z ,32),2 y = Z . (It can be
(2) (2) (2)

shown that A = 4-15!). The final stage of the Postnikov system is thus
R(z/2,31) —> F2
. 1 i
K(Z 50300 —2 ssu30 £ k(z/1,32).

Moreover rzj*(k') = Sq21 in H32(K(Z(2),30);Z/2) and ™7 (k') = xr, (1) €

n*(k') = IA(T) € H32(BSU32;Z/K) where r is the appropriate reduction

homomorphism and m: BSU32 - BSU3O. Q.E.D.

To finish the proof of Theorem 8.2, it cuffices to show that k'

32

cannot be chosen to be a primitive, for then F and thus F would not

be an H space. Since 02(T) = 45qc: Lemma 8.3 implies that t cannot
8
2

Thus Arx(r) contalns a nonzero middle term. Since 7 is an H map, k

be chosen to be primitive. In fact At contains the term tgi:)t

cannot be primitive and the proof is complete.
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several remarks are in order about this example. First we are
not claiming that E has no infinite loop structure. Indeed it is
possible that the ® infinite loop structure on BU may induce some
Q_ structure on E. 1f, however, we consider the fiber E' of

4 BSU -+ K(Z(z),60), then using the uniqueness of the infinite

530:
loop structure on BSU [AP] it is possible to prove that E' has no

infinite loop structure.

g ;:30

5 is not an infinite

Corollary 5.2 implies that [4815] € E

cycle. The class o = E(Q16|Q81Q4\a) € H27(Q3BU,B) represents an

3
element [a] € E3’27. Tt can be shown that < d3(4815),a > # 0 under

the pairing of the torsion submodules of H28(Q3BU) and H27(Q3BU).
on the other hand, for dimension reasons 8515 will be an infinite
cycle. Its mod 2 reduction can be shown to represent Sq168q85q41

in 1 20%0ur2/2) ¢ 22A/A(ST, ST

). The Miller spectral sequence for
H, (BU;Z/p) and H, (BO:Z/p) will be completely analyzed in our Bofth-

coming paper.
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