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AN OPERAD ACTION ON INFINITE LOOP SPACE
MULTIPLICATION

THOMAS LADA

It is well-known that an infinite loop space is an H-space whose multiplica-
tion enjoys nice properties concerning associativity and commutativity. A
practical way of identifying infinite loop spaces is the utilization of May's
recognition principle [3; 4]. To apply this principle, one requires an E_-operad
action on a space X ; this action gives rise to various multiplications on X. In
this note, it is shown that such multiplications enjoy an operad action up to
homotopy that encodes the associativity and commutativity information, and
that May's delooping theorem may be applied to them. We refer to [3] for the
terminology of operads and monads.

The author would like to express his gratitude to J. Stasheff who offered
. numerous comments concerning the proof of Lemma 4 and to J. P. May whose
comments in [3] provide one of the basic ideas of the proof of the same lemma.

To be more precise, let {€ (j)} be the infinite little cube operad of Boardman
and Vogt [1] as described in [3, Chapter 5], and let {C, &, 1) be the induced
monad, Let (X, 8) be an infinite loop space where 8 : CX — X is a C-space
structure map; this map may be viewed as a collection of equivariant maps
8,: €(n) X X*— X that commute with the internal operad structure
[3,Lemmal.4). Thespace X%isalsoa C-space with (6 X 8),: € (n) X (X?)*— X?
deﬁned bY (8 X a)n(dn X1, Y1y v v o0 Xy yn) - (en(du X1ye. 1xn)1 Bﬂ(d;ylﬂ sy yn))
If ¢ € ¥ (2) is any point, then the operad action on X restricts to yield a map
82(c) : X* > X, i.e.amultiplication on X.

Our main result is

THEOREM 1. 8:(c) : X* — X s a strong homotopy C-map for any choice of
c € (2.
Let us recall the definition of s.h.C-maps as well as some of their properties.

Definition 2. Let (X,E) and (Y, ¢) be C-spaces. Then f: X — ¥V is an
s.h.C-map if there exists a collection of homotopies {f,} with

ot "X CX =Y

satisfying
‘4; 0 Ca1ltss -+ b 2) ift1 =10
e s By B = Fieiiliy » + » gy weammry xn,.c’#zfn_j(z)) if ¢ =0
_ 2)“02,,,1(152, veos k) =1
£oully 2 2 b O Begllaannslin®y 1 3= L
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Here, p; is the natural transformation uC*: C*C*— CC'. In [2, Chap. V,
Cor. 5.2, Prop. 2.5] it is shown that if f: X — V is an s.h.C-map, then there
exist C-spaces UX and UV containing X and Y respectively as deformation
retracts, and a C-map Uf : UX — UY such that the diagram

UXLUY

1.}

X——>Y

commutes as a diagram of s.h.C-maps. As defined in [2, Construction 2.1],
Ux = 11 x c*'x/~
aq

where
Oy < 4 5 3 b i) N{(ﬁx, coonbpns b CT(®)) it =0
e (tlv R ‘tj—lr Cqu—j(tHl: b e th: x)) if tj = 1:

and n: X — CX is defined by 7(x) = (1,x) € € (1) X X where 1 € € (1) is
the point that acts as identity in the operad structure [3, Def. 1.1]. Of course,
May's delooping theorem may now be applied to the C-map Uf.

I't should be noted that the natural examples of C-spaces are infinite loop
spaces, and that their multiplications are clearly infinite loop maps by the
additivity of the stable category. I originally hoped to prove Theorem 1 for
arbitrary E,, operads and not just %, but I was unable to find a proof that did
not depend on the geometry of the little cubes. Nevertheless, the methods here
may be of interest as presenting a model of what actually is involved in the
verification that a particular map is an s.h.C-map, thus providing an illustra-
tive example for the general theory of [2, Chap. V].

To begin, let us fix a point ¢ € % (2) and define a map ap: X? — CX via
aolx, ¥) = (¢, x,v) € F(2) X X2 Note that the composition § o ag: X2 — X
is equal to the map 6:(c, x, v).

Now define a mapa : UX? — CUX wherea : I" X C™1X2 — [* X ("X is
given by

a: "X M X (XY =" X F(2) X (M) X XV X V¥
SuCh thata(h, e |f-mz)xlsy11 e stlyN) = (tls ey fn, €, 2,8,%1, - -+, X,y }’1, s lyN}

where XV and Y¥ are the first and second coordinates of (X?)¥ respectively,
and M and N are integers large enough to make sense. We will require

LEMMA 3. a 15 well-defined.
and

LEMMA 4. The composition poa : UX®* — UX is an s.h.C-map.
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In Lemma4, u: CUX — UX is the natural C-space structure map defined in
[2, Chap. V, Cor. 2.4] induced by the natural transformation u: C* — C.

Proof of Theorem 1. Consider the diagram
7

Uvx:—2 »CUX -+ UX
xr—2 oy —f oy
where 7 is the retraction UX — X defined by r(ty, . . ., Ly, 2) = 0,41, . .., Ly, 2)

where 6, : [* X ("X — X. This diagram commutes sincer o p oa 0 5(x, y) =
ropoa(l,x,v) =ropll,1,x9) =r(,xy) = 6, x, v). Moreover, 5
is an s.h.C-map, 7 is a C-map and thus the composition r o p 0 07 is an
s.h.C-map.

Proof of Lemma 3. Since o is defined on the operad level, it must be verified
that & respects the relation defining the functor C defined in 3, p. 13]. We use
induction and first show that « : CX% — C2X is well-defined:

1) Equivariance: we have a: % (k) X (X2)* X F(2) X € (k)2 X X*; let
(@ %0, 91, oy %, W) € G (B) X (X2 and ¢ € 2. Then

(Ao, 21, ¥1, oy %k, Vi) ~ () K10y, Vo101 + - - 5 Fo-1), Yo—1q8))
but
a(de, X1, 1, .. ., X, 9) = (¢, do, do, %1, %2, . .o, Xy V1, Y2, v+ o, Vi)
~ (€, &y 8y Xe=101)y « - + 4 Xo=10, Vo101, - + 3 Yo—1())
= a(d, %s-101), o103, - . - » Ea=100), Ye—1(1)) -

2) Base point identifications: suppose (x; y;) = (%, *) where * is the base

point of X. Then if we write d = (di, ..., d) € € (k), we have
(1, ...y X1, Y1y o - oy Xk, Vi)
~(dyy ey @iy e T Ve ey & Doy X ).
But
aldy, ..., dy, %1, Y1, - - -, Xk, Vi)
= (e, ..., dy oo By Xy e K YL e T

A

N(Crdll---1di1---,dksd11---:aiy-"’dkxxll‘--lgei:"'rxklylz--')ﬁfx-'-nyk)
=a(dlj"'r&il---ldk)xllyls‘°'1£i:j}£:°--|xk1yk)-

In 1) and 2) the relations denoted by ~ are those used in the construction of a
monad from an operad referred to above. Now assume the mape : ("1X? — C*X
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is well-defined. A straightforward calculation identical to the one above allows
us to conclude that « : C"X? — C"H'X is well-defined.
We now demonstrate that & respects the relation defining UX? We have

a,: " X CPHX? It X cr2X.

£, =0, (). bus z) ~ (t1, ... i ooy by O e y(2)). For a to be well-
defined, it is necessary that

a0 CH ;= Clpyj 0
To see this, on the operad level the maps are defined from
GV X G R X CGL) X ... X E ) X T¥ X (X"
to
% (2) X (€M) X C ()P X (TM) X X**

where j = ji+ ...+ 5 By writing down the appropriate commutative
diagram, it is easy to see that the above equality is true.
On the other hand, if ¢; = 1,

(’tly ] bay Z) ~ (tlv Ty 'i’j—ls Cj(e X g)n*j(ti+1! vy by Z))-
We have to show that
a0 Cif X 0)yy = CH(0)py 0

Recall that (8 X 8),—; = (8 X 6) 0 p Oy O . O finj-1 and that 6,—; =
B o~oir oy ~ oot - A_]cn
U a0 e MM S e s S e ey SRR
Citg, j0a = CH9oC*po...0 CHly, ;10a
- CH9oCHtuo...on 0 Cluy i
— (C*9oaoClpo...o

Since @ 0 C/(B X 8y = 2 0 C7(6 X 0) o C'p o... 0 Clu,_1, we have to
show that C*+§ oa = a o C?(6 X 0). Let us choose a point

[d, e . .,ex &Y. % S Y vce sy KRy D oo » B i, V)] € CHLX®
where K = Yi=1j: Apply a to get

(¢, d2, 1%, . . .5 €% X35 « o - ) XRbjhr Y15 - - - e
and then apply C/*'0 to get

(c,d? 8, (e, %1, .y %1)y e - e 0k, - o X ) O e, Yo e

Now apply C?(6 X 8) to the point chosen above to get

[dvejl(ehxl: 5 B 1xh>| 93‘1(31:3/1: o i 1yik)l e sejk(eﬁ'rxff: ey xK+jk)l i ']
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and then apply « to get

[C! d21 Hjl(elrxlr LR :le)l ok sy ejk(xK! R lxK-i-j'k}! 6;‘1(81!3’13 .. :3’;51), ‘o '}-

Proof of Lemma 4. To show that p o a : UX? — UX is an s.h.C-map, we will
construct a family of homotopies k, : I" X C"UX — UX which satisfy the
requisite conditions of Definition 2. We will describe these homotopies on the
operad level and take care that they will be compatible with the relations
defining C and U. In order to proceed with the construction of k,, we require
the utilization of a specific element ¢ € % (2). Recall that ¢ = {c;, ¢c2) where
each ¢;: (I°)"— (I°)" is a linear embedding with parallel axes; also, im(c;) N
im(c2) = 0. Let us choose ¢; to be the linear embedding defined by y = %x in
the first coordinate and the identity map in the remaining coordinates; simi-
larly, we choose ¢, to be defined by y = %x - % in the first coordinate and the
identity map in the remaining coordinates.

We first construct £y : I X CUX? — UX such that ho = p 0 Cu o Ca and
hi|i = p oa o u; on the operad level, k; is a map

B IXDPPXER)XEG) X ... X EG) X €M X (XY
—I" X F(327,) X €M x X,

Let us choose a pointin I* X € (k) X € (ji) X ... X € (Gs) X €™ X (X2)¥,
say
(5;, ...,in,d,el,. ..,ek,z,xl,yl,...,xN,yN}.

We require that

il =poCuoCally, ... tyd, e1, ..., €02,%,%1, - .., %y, Yy)
=poCulty,... tyd,c e ..., ¢ el 22 x,. SRR 200 s TR, P
=pulty, .., b d, y(c; @), ..., v(c; &2), 22, )
= Qs ibuPEE" 6% aniy 698 ).

Here v is the little cube operad “‘multiplication” that induces p. On the other
hand,

Bili = p ow o mllys s sk s By v 5988 8 Bn Ve 5 « 5 By Vi)
=poalt,. .., byy({die,...,e),2,%, 9, ..., %, Yx)
=pulh, .ty y(diesn ... ez, %o, X Y1 e, V)
= (e by 2005 2Ld 800~ 280) 200258 « vy B s 20 Vi)
= (4, s sy by TGO )5 B 395800 3 555 B0 B% Bnin 5y iy s vcnny Vi)
~ ety (rCid) ey ey, a)0, 2%, %, Ty,
O Y

= (tneo by (r(cid¥a, ety . et), 220,20, Ky, Y1, [ T,
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The use of the ~ two lines above is justified by the fact that since we want #;
to be defined on the monad level, we may work with equivalent points on the
operad level. The evident shuffle permutation above is denoted by o.

It follows from the above calculation that we require a path in % (2k)
between v (d; ¢*) and v(¢; d*)e. A path between these points certainly exists
since % (2k) is contractible by definition; however, we need to make certain
that the path respects basepoint identifications. For this, we require the
geometry of the little cubes. Let d = (di, . . ., di) where the little cube d, has
first coordinate given by vy = (22" — z1')x + 2" where 0 £ 2, < 3. £ 1. We
have that

v(c;d%) = {ci0d;,¢c1 0ds, ..., 01 0d;, 62 0ds, ..., 0dy)
and
y{d; *)o = {di0cy,d1 0¢s,d2061,d2003,...,d; 0¢1,d; OCa)a
={dyocy,dyocy,...,dy0c,d0Cs,d2 06, ..., d Oca).

We thus need only to describe a path between d; oc;and ¢; od;. Let us examine
the first coordinates of these cubes. We have

crod; =£(z' —z21)x + $5' and d;oc = 3(z:f — z219)x + zb

Geometrically, these are parallel lines and a péth between them may be
described by

2—1

Z]_t.

') =3 @' —a)x+

— T = AtD).

Similarly,
c20d; = (22" — m')x + (22" — 21%) + %
and
diocs = §(z! — m1)x + 52" — 21Y) + &'
and a path between these parallel lines may be taken to be
g’ (1) = 3@ — 22 4+ 3 + (1= )zt
We thus may define
Ra(8) = (fi2 (@), g (0), .. P (), &' (1), - ., S22 (0D, () )
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As we have to glue together these homotopies with the relation defining a
monad from an operad, we must now exercise a bit of caution. It is clear that
this homotopy is equivariant as it is defined coordinate-wise. It is also clear
that this homotopy respects basepoint relations as such identifications amount
to deleting the appropriate coordinate. However, if we let K = geometrical
dimension of the little cubes in question, our path may not remain in Cr(2k);
Le. any reasonable path such as the one given above depends on the number k
of little cubes involved. To remedy this, we modify &, (¢) slightly in the following
fashion: let us first embed the point (di 0 ¢1,di 0¢a, ..., d; 0cy, dy O €9) in
Crs1(2k) via {di1ocy X 1,dioca X 1,...,dvoci X 1,d; 063 X 1) where 1
is the identity map I°—7°. Now describe our homotopy by shrinking each
diocr X 1tod;oc X (0,%) and each d;0ca X 1 to dy o6 X (3,1). We
may now translate each d; o ¢c; X (0, 3) tocs X d; o (0, %) by f1'(t) and each
di0cx X (5,1) toez 0dy 0 (3, 1) by g:'(t) as described above without possibility
of collision. We then expand ¢; od; X (0, %) toc; od; X (0,1) and ¢: 0 d; X
(3, 1) tocs 0ds X (0, 1). This procedure makes certain that our path remains
in % (2k). To facilitate notation and parametrization, we will not formally
write down this expanding and shrinking; we will, however, assume that it has
been done whenever necessary.

We now proceed to construct %, inductively. Assuming that we have defined
hn_1, we exhibit k, as an appropriate path from Ch,_; to 4 0@ 0 u, ;. Note that
B O« Oy, applied to a point is an # + 1 fold composition of little cubes in
each of the V coordinates; this composition is of the formc; oA 0 Mz 0... O A,
with 4 = 1, 2. Let the first coordinate of each \; be given by the line y =
(22" — =1)x + 2. Again, our homotopy will involve a translation of the first
coordinate of the cube in question. The first coordinate of A; o... o A, is given
by

4 n

i-1
y = H (ZEi - 311)35 + Z 211 I:II (sz = le).

=1

Again, we define a path for each coordinate and each ¢,. Specificially, for ¢;, we
define

1 7
fn(zly ey tru >\1| ey }\n) = 5 III (521: — zlf)x
i=

14 Pl ..., ¢ g
3 =+ (12 )214 1 G — 2.9
i=1 =1

where

Pty ..., t) = 313 (1—1¢)

and

i—1 )
(Zgj—zlj) =1 ifz= 1.
1=1
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On the other hand for ¢,, we define
gn(‘tlﬂy A rt'fli P\h ey kn) = fn(tll wlaiy !‘tn)
+ 3+ (1= 4) (2" — 5") (@1l - ooy b)) — frci(tey . ., 8)).
We then of course define
hn = (fnls gnll e Jfers gnN)'
To verify compatibility with %;, j < n, we begin with £, = 0. Then
1+ : 14 P, ..., 4y
Sty =211 @ —ahe+ 3 LEEC- k)
2 1=1 =2 2
X Zli ]_—Il (22'? — 21]) + 21
j:
= Rlo Cfn—l(tm = ltﬂ! A?: ey ?\n)‘
If t; = 1, we have
1 n n i—1 .
h=51] @ —ahe+ X o (2 —2) =ciono0... 0N,
2 i=1 =1 2 j=1
Ift, =0, 2> 1, we have
Ly o s 14 Pl t)
flty oo ) =3 T] @ -2+ 3 LLL‘)zl (32" — 21%)
2 i =1 2 j=1
12 . S 1+ Pl .., 8)
() =51l @' a3 PELC BT
i=1 i=1 j=1
14 Q—b)e = i) 5 B2
+ + ¢ 1)2 ( 1) By H (22’ — le)
1+ A —t)... 0 —gy)-1 %=
+ + ( I) : ( k 1) glk I_Il (ZQJ - zlf)
e
n ) i—1 )
(B) + 2 2t [l G — 2
i=k+1 F=1
1 1-— v (1 — b '
=4 + + ( tl)g ( k 1) [zlk(zzl.-—-l _ zlk—l) + Zik—l]
k—2
X (2o’ — 27) + B
7=1
=fn_1(lf1, o] ,.’Ek, R Al, . P\k—lo?\k, S Rn)
Note that
M1 0N = (2051 — 271 (2F — 20%)x + (2571 + (31 — zlk_l)zlkj-

Finally, if &, = 1, & > 1, we have
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] o s 1Pl .8 B
fr = 3 (@' — 2 + 3 *—_t‘-(—;——) a' ][] (@ - zy7)
1=1 i=1 =1
14 S 1+ Ply,... 0 i 5 ;
=51l (&' —a"x + %_,__(‘12_—) 2' [T (& — 21
f=1 i=1 i=1
1 n ) i—1 )
+ 5 Zx 21 L1 (227 — 2:%)
i=k 7=
e L N— TR SR Ai-1) o (\vo ... 0 M)

The verification of the fact that the g, also obey these relations follows from
a similar computation. _

One more point remains to be clarified. In this proof we used a specific point
¢ = (c1,63) € € (2). The theorem will in fact be true for any other choice of .
To see this, recall that % (2) is contractible; thus for ¢ and ¢’ in % (2) the map
62(c) is homotopic to the map 6(c’) via any path between ¢ and ¢’ in % (2).
In [2, Chap. V., Thm. 6.2 (ii)], it is shown that any map homotopic to an
s.h.C-map is itself an s.h.C-map.
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