L. ALGEBRA REPRESENTATIONS

TOM LADA

1. INTRODUCTION

This note on L, algebra representations is motivated by a problem
in mathematical physics originally encountered in [1] and addressed in
[3]. In classical gauge field theory, one encounters representations of
Lie algebras in the guise of the Lie algebra of gauge parameters acting
on the Lie module of fields for the theory. However, as in [1], these Lie
structures occasionally appear up to homotopy

The definition of an L., module structure appeared in [2]. We recall
the classical result that if L is a Lie algebra and M is an L module, then
the vector space L @ M inherits a canonical Lie algebra structure. The
main result in this note is the not surprising fact that the homotopy
theoretic version of the above fact is also true. We hope that the explicit
construction of the L., structure on L @& M will be of practical use in
analyzing the algebra structures that arise in various gauge theories.

We would like to thank Jim Stasheff and Kailash Misra for sugges-
tions and comments regarding this note. We also thank the referee for
many insightful and useful suggestions regarding the organization of
this note.

2. L., STRUCTURES

We work in the category of graded vector spaces over a fixed field
k of characteristic zero. As is usual in this setting, the Koszul sign
convention will be employed: whenever two symbols (objects or maps)
of degrees p and ¢ are commuted, a factor of (—1)P? is introduced. For
a permutation o acting on a string of symbols, we use e(o) to denote
the total effect of these signs; the notation y(¢) = (—1)%¢(0) where
(—=1)? = sgn(o) is the sign of the permutation o will also be used. In
order to minimize extraneous notation, we will denote the degree of a
vector v by v itself when it will not lead to ambiguities; i.e. we will
write (—1)? to mean (—1)99(),

Frequently, when one encounters homotopy algebra structures in ex-
amples, they usually manifest themselves as relations on elements in a
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graded vector space. However, in analyzing properties of such struc-
tures, it is usually more efficient to deal with compositions of the maps
defining such structures, or, on occasion, the coderivations that result
from such structures. Consequently, we present the following defini-
tions from both points of view in the hope that the reader may profit
from at least one.

Recall the definition of an L., algebra.

Definition 1. An L., structure on a graded vector space L is a collec-
tion of linear maps Iy, : L — L with deg(ly) = k — 2 which are skew
symmetric in the sense that

(Vo) ® - @ Vory) = X(0)lk(v1 ® - - @ )
and satisfy the generalized Jacobi identity

D D) (=)= IV ((ve) @+ @ Ue)) @+ - @ Up(m) = 0

i+j=n+1 o
where the sum is taken over all (i,n — i) unshuffles o.

The generalized Jacobi identity in the definition above may be writ-
ten more succinctly as

M) S (=) e 1) =0

i+j=n+1

where 6 = Y sgn(o)o and the sum is taken over all (i, n—i) unshuffles.

We note that L., algebras are also known as “sh Lie” or strongly
homotopy Lie algebras. Also, if one wishes to work with cochain com-
plexes rather than with chain complexes, the definition above remains
the same except that the degree of each [ is required to be 2 — k.

Recall that an L, algebra structure on the differential graded vector
space L may be described by a coderivation D of degree +1 on the
cofree commutative coalgebra A* T L with D? = 0. Here, | refers
to the suspension map of the graded vector space; i.e. T L is the
graded vector space with (T L), = L,_;. The sign (=1)*"=Y in the
definition above results from applying the standard sign convention to
the commutation of the maps [, and the iterated suspension in the
construction of D from the [,,’s. These details may be found in [2].

The next definition is a rephrasing of the definition of a left module
over L., algebras that appeared in [2].

Definition 2. Let L = (L,l;) be an Lo, algebra and let M be a dif-
ferential graded vector space with differential denoted by ki. Then a
left L-module structure on M 1is a collection of skew symmetric linear
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maps of degree n — 2,
ky:@" 'L® M — M,
such that

Do D X1k (1o ©- - ©o () Dbaipin) ©- - ©o(m)

pt+g=n+1lo(n)=n

+ Z Z 1)PE=D (= 1)0 (= 1) P+ Gok) Diempr ot

p+g=n+lo(p)=n

kII(gU(ID-I-l 2 go ® k (50(1 - ® gcr(p))) =0
where o ranges over all (p,n —p) unshuﬁcles, &, .81 € L, and
&n€M.

Again, we rewrite the defining relation in the definition above with-
out elements as the sum over p + ¢ =n+ 1 of

Zkl@ )sgn(o 0+Z D k71 (k, ® 1)sgn(o)o = 0.
(n) o(p)=n
Also, 71 is the cyclic permutation (1 ¢ ¢—1...2) and (—1)7"!is the
sign of 7. More generally, when permuting n symbols, we will make
use of the cyclic permutation 7; = (i n n—1 ...i+ 1) along with
its sign (—1)"" in the next section.
Of course, the fundamental example of an L., module structure oc-
curs in the situation when L = M and each k; = [;, i.e. L is an L.,
module over itself.

3. MAIN RESULT

In the classical Lie case, if M is a Lie module over the Lie algebra L,
then the vector space L& M possesses a canonical Lie algebra structure.
We now show that exactly the same result holds for the L., case.

Theorem 1. Suppose that (L,lx) is an Lo algebra and that (M, k,)
s a left Lo module in the sense of the previous definition. Then the
graded vector space L & M has an Ly, algebra structure given by

Jnf(v1,m1) @ -+ @ (vn, M)} =
(L (11 - -®uy), Zn:(_l)n—i(_l)mi Yh=in1 % (0,®- - -QU;Q- - -QUp, M;)).
where U; means ;Eit v;. Again, without elements, we write
Jn = (LY, i(—l)"‘ikn(ﬂ?_l ® T9)T;)-

i=1
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Proof. We must show that the collection of the j,’s satisfies the re-
lations in Definition 1. We first check each coordinate map for skew
symmetry.

T1n0 = lpmio = lyony = sgn(o)l,m] = msgn(o)jn

where we used the fact that each [,, is skew symmetric.
For the second coordinate, we have

n n

Tojn0 = Z(—l)"‘ikn(ﬂf_léaﬁg)ﬁa = Z(—l)n_ik‘n(77'?_1@)71'2)0’,7'0—1@)

i=1 i=1
where ¢’ is the unique permutation such that ¢’(n) = n and 7,0 =
0'7,-1(;). Consequently,

n

7T2jn0 = Z(_l)n_iknal(ﬂ-?_l ® 7T2)7_o*1(i)
=1

=3 sgn(o) (=1 Ok (777 © 1) 71

= Z sgn(0)(=1)""kn (7] ™" @ m2) T = Tasgn(0) -
i=1
Here we used the fact that each k, is skew symmetric and that the
permutation ¢’ commutes with the map 7' ® 7.
We next show that the j,’s satisfy equation 1, i.e. that

S (=DM @ 15 =0,
p+g=n+1
The first coordinate of this composition is equal to
S (Pt © 1M
pt+g=n+1

which is equal to 0 because the [,,’s form the L., algebra structure on
L.

For the second coordinate, we rewrite the composition

q P
(D (1) Pk (nf T @mo)my)o(yt, Y (1) hy(nh T Oma) @1 )6
j=1 i=1
as
P

(D" k(2™ @ m)r (3 (1P k(@ ma)r @ 177)
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+ 3 (1) k(7 @ m) Tl © 1777 Y6,
i=p+1

Note that the index 7 = 2, ..., ¢ in the second summand is renamed
as i =p-+1,...n. Also, the first summand holds for the unshuffles o
with o(p) = n and the second summand holds for the unshuffles o with
o(n) = n. Next we fix r with 1 < r < n and consider the unshuffles
with o(i) = r. When i < p, we are in the case where o(p) = n and
the cyclic permutation 7; acts on the first p symbols. Let ¢’ be the
unique unshuffle with 7,0 = o'7, and ¢'(j) = o(j),j > p and ¢’ =
r. We have that sgn(7;)sgn(o) = sgn(o’)sgn(r,) or (=1)P~'sgn(c) =
sgn(a’)(=1)"".

When i > p, we have o(n) = n and 7; is as previously defined. Let
o’ be the unique unshuffle with o’(j) = o(j) for j < p, o’(n) = r and
7,0 = 0'7,.. Here, we have (—1)""'sgn(c) = sgn(a’)(—1)""".

The first summand above may now be written as

(=1)" " (=1)""kymi(ky @ 1)o7,

with o’(p) = n. Also, (-1)"P = (=1)97! because p +q =n + 1.
The second summand may be written as

(=1)" 7 (=1)"(=1)""ky(ly @ 1)o7,

So for each fixed r, we have Equation 2 following the permutation 7,
and multiplied by the coefficient (—1)""", each of which is equal to 0
because M is an L module.
Consequently, the L., algebra relations are satisfied.
]

4. REMARKS

1. A straightforward calculation will show that if L is a Lie algebra
and M is an L-module, then the structure maps constructed in the
previous section, j,, for ¢ > 2, may be taken to be zero. Additionally,
the bracket given by js is the usual Lie bracket for L & M, namely,
[(ll,m1)> (52>m2)] = ([lblz], Iy -mg — 15 'ml)-

2. In [3], an L structure is constructed on a vector space direct
sum L & M using assumptions in [1]. In this context, L is in fact the
vector space of gauge parameters and M is the vector space of fields
for these particular field theories. However, in contrast to the result in
the previous section, L itself is not an L., algebra with M a module
over L. Such structures will be analyzed in future work.

3. Of course, the L, structure on L& M may be described in terms of
a coderivation D of degree +1 on the cofree cocommutative coalgebra
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A* 1 (L & M) with D? = 0. For a direct construction of D in terms of
.jlb see [2]
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