22. M. Doubek and T. Lada, Homotopy Derivations Journal of Homotopy and Related Structures Vol 11 No. 3, 599-630 (2016)
21.T. Lada and M. Tolley, Derivations of homotopy algebras, Archivum Mathematicum (Brno), Tomus 49, 309-315 (2013).
17. M. Daily and T. Lada, Symmetrization
of brace algebras, Rendiconti Del Circolo Matematico Di Palermo, Serie II, Suppl. 79, 75-86 (2006).
16 M. Daily and T. Lada, A finite dimensional
L-infinity algebra example in gauge theory, Homology, Homotopy and
Applications, vol.7(2), 87-93 (2004).
15. T. Lada, L-infinity
algebra representations, Applied Categorical Structures 12, 29-34 (2004).
14. T. Lada and M. Markl, Symmetric brace
algebras, Applied Categorical Structures, 13(4), 351-370 (2005)
13. R. Fulp, T. Lada and J. Stasheff,
Noether's variational Theorem II and the BV formalism, Rendiconti
Del Circolo Matematico Di Palermo, Serie II, Suppl. 71, 115-126 (2003).
12. R. Fulp, T. Lada and J. Stasheff,
Sh-Lie algebras induced by gauge transformations, Communications in Math
Physics 231, 25-43 (2002).
11. G. Barnich, R. Fulp,
T. Lada and J. Stasheff, Algebra structures on Hom(C,L), Communications
in Algebra 28, 5481-5501 (2000).
10. T. Lada, Commutators
of A-infinity structures. Contemp Math 227, 227-233 (1999).
9. G. Barnich, R. Fulp, T. Lada
and J. Stasheff, The sh Lie structure of Poisson brackets in field theory, Communications in Math Physics 191, 585-601 (1998).
8. T. Lada and M. Markl, Strongly homotopy
Lie algebras. Communications in Algebra, 23, 2147-2161 (1995).
7. P. Goerss and T. Lada, Relations among homotopy operations
for simplicial commutative algebras, Proc. AMS, Vol. 123, N0. 9, 2637-2641
(1995).
6. T. Lada and J. Stasheff, Introduction
to sh Lie algebras for physicists. Int. J. Theo. Phys. 32, 1087-1103 (1993).
5. D. Kraines and T. Lada, The cohomology of the Dyer-Lashof
algebra, Contemp. Math. 19, 145-152 (1983).
4. D. Kraines and T. Lada, Applications of the Miller spectral
sequence, Conference Proceedings of the Canadian Math Society, Vo.2, Part 1 (1982).
3. D. Kraines and T. Lada, A counterexample to the transfer
conjecture, Lecture Notes in Math, Vol. 741, 588-624 (1979).
2. T. Lada, An operad action on infinite loop space multiplication,
Canadian Jour. of Math. 29, No. 6, 1208-1216 (1977).
1. T. Lada, Strong homotopy algebras over monads, Lecture
Notes in Math, Vol. 533, 399-479 (1976).